精英家教网 > 高中数学 > 题目详情
8.函数f(x)是定义在R上的偶函数,下列说法:
①f(0)=0;
②若f(x)在[0,+∞)上有最小值-1,则f(x)在(-∞,0]上有最大值1;
③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数.
其中正确的个数是(  )
A.0B.1C.2D.3

分析 根据偶函数的性质,逐一分析给定三个命题的真假,可得答案.

解答 解:∵函数f(x)是定义在R上的偶函数,
∴①f(0)=0不一定正确,如f(x)=cosx,故错误;
②若f(x)在[0,+∞)上有最小值-1,则f(x)在(-∞,0]上有最小值-1,故错误;
③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数,故正确.
故选:B

点评 本题以命题的真假判断与应用为载体考查了偶函数的性质等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.正方体ABCD-A′B′C′D′的棱长为1,E为线段B′C上的一点,
(Ⅰ)求正方体ABCD-A′B′C′D′的内切球的半径与外接球的半径;
(Ⅱ)求三棱锥A-DED′的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若f(2x-1)=3x2+1,则f(x)的表达式为$f(x)=\frac{3}{4}{x^2}+\frac{3}{2}x+\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\frac{2x}{2x-1}$(x≠1),数列{an}的通项公式为an=f(${\frac{n}{2018}}$)(n∈N*),则此数列前2018项的和为2020.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和Sn满足:Sn=2an-3n(n∈N*).
(1)求a1,a2的值,
(2)求证:数列{an+3}是等比数列,并求数列{an}的通项公式;
(3)在数列{Sn}中取出若干项S${\;}_{{n}_{1}}$,S${\;}_{{n}_{2}}$,S${\;}_{{n}_{3}}$,…,S${\;}_{{n}_{k}}$,…,若数列{nk}是等差数列,试判断数列{S${\;}_{{n}_{k}}$}是否为等差数列,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,Sn=n2+n.
(Ⅰ)求{an}的通项公式an
(Ⅱ)若ak+1,a2k,a2k+3(k∈N*)恰好依次为等比数列{bn}的第一、第二、第三项,求数列{$\frac{n}{{b}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{x+4}{x}$与g(x)=|x2-6x|的定义域为[1,4].
(1)求这两个函数的值域并作处这两个函数的图象;
(2)若函数g(x)的图象与直线y=k仅有一个交点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-(k-2)x+k2+3k+5有两个零点.
(1)若函数的两个零点都大于-2,求k的取值范围;
(2)若函数的两个零点是α和β,求α22的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,D是BC上的一点,AD平分∠BAC且△ABD的面积是△ADC面积的2倍.
(1)求$\frac{AC}{AB}$的值.
(2)若∠BAC=60°,BC=2,设∠B=x,△ABC的周长为y,请写出y与x的关系式,并求定义域和值域.

查看答案和解析>>

同步练习册答案