精英家教网 > 高中数学 > 题目详情
14.设函数f(x)=ax2+bx+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的零点;
(2)若对任意b∈R,函数f(x)恒有两个不同零点,求实数a的取值范围.

分析 (1)利用二次方程,真假求解即可.
(2)利用二次函数的零点,通过判别式,得到不等式,然后推出b的二次不等式,转化求解即可.

解答 解 (1)当a=1,b=-2时,f(x)=x2-2x-3,
令f(x)=0,得x=3或x=-1.
∴函数f(x)的零点为3和-1.
(2)依题意,f(x)=ax2+bx+b-1=0有两个不同实根.
∴b2-4a(b-1)>0恒成立,
即对于任意b∈R,b2-4ab+4a>0恒成立,
所以有(-4a)2-4(4a)<0⇒a2-a<0,所以0<a<1.
因此实数a的取值范围是(0,1).

点评 本题考查函数的恒成立,二次函数的性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.f(x)=sin2x+$\frac{\sqrt{3}}{2}$sin2x.
(1)求函数f(x)的单调递减区间;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,若f($\frac{A}{2}$)=1,△ABC的面积为3$\sqrt{3}$,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合M={1,2,3},N={2,3,4},则下列式子正确的是(  )
A.M⊆NB.N⊆MC.M∩N={2,3}D.M∪N={1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在空间直角坐标系中,设A(m,1,3),B(1,-1,1),且|AB|=2$\sqrt{2}$,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若tan(α+$\frac{π}{4}$)=sin2α+cos2α,α∈($\frac{π}{2}$,π),则tan(π-α)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=xlnx-a(x-1)2-x+1.
(1)当a=0时,求f(x)的单调区间与极值;
(2)当x>1且a≥$\frac{1}{2}$时,证明:f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设全集I=R,集合A={y|y=x2-2},B={x|y=log2(3-x)},则A∩B等于(  )
A.{x|-2≤x<3}B.{x|x≤-2}C.{x|x<3}D.{x|x<-2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对于集合A,B,C,A={x|x2-5x+a≥0},B={x|m≤x≤m+7},若对于?a∈C,?m∈R,使得A∪B=R.求集合C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=3,cosB=$\frac{1}{4}$.
(1)求b的值;
(2)求sin2C的值.

查看答案和解析>>

同步练习册答案