分析 (1)代入a值,求导,利用导函数判断函数的单调区间;
(2)求出f(x)的表达式,利用构造函数g(x),利用导函数判断函数f(x)的单调性,根据单调性证明结论.
解答 解析:(Ⅰ)a=0时,f′(x)=1+lnx-1=0,x=1,
当x>1时,f′(x)>0;当0<x<1时,f′(x)<0.
故f(x)的单调递减区间为(0,1),单调递增区间为(1,+∞),
f(x)在x=1处取得极小值f(1)=0,无极大值.(6分)
(Ⅱ)f′(x)=lnx-2a(x-1),设g(x)=lnx-2a(x-1),则g′(x)=$\frac{1}{x}$-2a<0,
∴g(x)<g(1)=0,
∴f′(x)<0,
∴f(x)<f(1)=0.
∴f(x)<0.(12分)
点评 考查了导函数的应用,和构造函数,根据导函数证明结论.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示 | |
| B. | 经过任意两个不同点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示 | |
| C. | 不经过原点的直线都可以用方程$\frac{x}{a}+\frac{y}{b}=1$表示 | |
| D. | 经过定点A(0,b)的直线都可以用方程y=kx+b表示 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0≤x<1} | B. | {x|0<x≤1} | C. | {x|x<0} | D. | R |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | -1 | C. | 1 | D. | 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com