精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线C的极坐标方程为.

(1)求曲线的普通方程和的直角坐标方程;

(2)分别交于点,求的面积.

【答案】(1),(2)

【解析】分析:第一问利用三种方程的转化方法,求出曲线的普通方程和曲线的直角坐标方程,第二问设出点的坐标,代入相应的方程,求得对应的,利用极坐标中的几何意义,求得底边的长,再结合图形的特征,求得对应的高,之后求得三角形的面积.

详解:(1)曲线的普通方程,即

所以的极坐标方程为,即.

曲线的直角坐标方程:

(2)依题意,设点的坐标分别为

代入,得

代入,得

所以,依题意得,点到曲线的距离为

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,直线的参数方程为,(为参数.以原点为极点,轴正半轴为极轴建立极坐标系曲线的极坐标方程为.

(1)写出直线的极坐标方程与曲线的直角坐标方程

(2)已知与直线平行的直线过点且与曲线交于两点试求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【题目】已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.

(1)证明:坐标原点O在圆M上;

(2)设圆M过点P(4,-2),求直线l与圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下三个关于圆锥曲线的命题中:

①设为两个定点,为非零常数,若,则动点的轨迹是双曲线;

②方程的两根可分别作为椭圆和双曲线的离心率;

③双曲线与椭圆有相同的焦点;

④已知抛物线,以过焦点的一条弦为直径作圆,则此圆与准线相切,其中真命题为__________.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个顶点,其外接圆为.对于线段上的任意一点

若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,则的半径的取值范围__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】αβ为两个不同平面,ab为两条不同直线,下列选项正确的是(  )

①若aαbα,则ab

②若aααβ,则aβ

③若αβaβ,则

④若aα,则a与平面α内的无数条直线平行

⑤若ab,则a平行于经过b的所有平面

A.①②B.③④C.②④D.②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某几何体的三视图中,俯视图是边长为2的正三角形,正视图和左视图分别为直角梯形和直角三角形,则该几何体的体积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数,有下列说法:

1)函数满足则函数在上不是单调减函数;

2)对任意的 函数满足则函数在上是单调增函数;

3)函数满足则函数是偶函数;

4)函数满足则函数不是奇函数.

其中,正确的说法是________(填写相应的序号).

查看答案和解析>>

同步练习册答案