精英家教网 > 高中数学 > 题目详情
1.log${\;}_{\frac{1}{2}}$[log3(x-2)]=0,则x=5.

分析 利用对数的运算法则化简求解即可.

解答 解:log${\;}_{\frac{1}{2}}$[log3(x-2)]=0,
可得log3(x-2)=1,
即x-2=3,
解得x=5.经验证可知,x=5是方程的根.
故答案为:5.

点评 本题考查对数方程的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.一个小球81米高处自由落下,每次着地后,又跳回到原来的$\frac{2}{3}$,那么当它第5次着地时,共经过了多少米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知奇函数f(x)是定义在(-3,3)上的减函数,不等式f(x-3)+f(x2-3)<0的解集为A,集合B=A∩{x|1≤x≤$\sqrt{5}$},求函数g(x)=5x2-21x+1,x∈B的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=$\frac{2}{\sqrt{k{x}^{2}+4kx+3}}$.
(1)若f(x)定义域为R,求实数k的取值范围;
(2)若f(x)定义域为(-6,2),求实数k的值;
(3)若f(x)值域为(0,+∞),求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.己知f(x)是定义在R上的奇函数,当x>0时f(x)=x2-4x+3,则不等式f(x)≥0的解集用区间表示为[-3,-1]∪[0,1]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.画出函数y=$\frac{x}{x-1}$的图象,试指出它可以由函数y=$\frac{1}{x}$的图象经过怎样的变化得到,并写出它的定义域、值域、单调区间及对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A、B、C所对的边分别是a、b、c满足:cosAcosC+sinAsinC+cosB=$\frac{3}{2}$,且a、b、c成等比数列.
(Ⅰ)求角B的大小;
(Ⅱ)若$\frac{a}{tanA}$+$\frac{c}{tanC}$=$\frac{2b}{tanB}$,a=2,判断三角形形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.y=ax(a>0,a≠1)是减函数,则a的取值范围是(0,1);则函数f(x)=loga(x2+2x-3)的增区间是(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.利用对数求导法求下列函数的导数:
(1)y=(sinx)x(sin>0);
(2)y=$\frac{(\sqrt{2x+1})(3x-5)^{3}}{\root{3}{(x+8)(5x-9)}}$(x>$\frac{9}{5}$).

查看答案和解析>>

同步练习册答案