精英家教网 > 高中数学 > 题目详情
12.已知奇函数f(x)是定义在(-3,3)上的减函数,不等式f(x-3)+f(x2-3)<0的解集为A,集合B=A∩{x|1≤x≤$\sqrt{5}$},求函数g(x)=5x2-21x+1,x∈B的最大值和最小值.

分析 借助奇偶性脱去“f”号,转化为不等式,利用数形结合进行集合运算和求最值.

解答 解:根据题意,可得$\left\{\begin{array}{l}{-3<x-3<3}\\{-3<{x}^{2}-3<3}\end{array}\right.$,
解得故0<x<$\sqrt{6}$,
又∵f(x)是奇函数,
∴f(x-3)<-f(x2-3)=f(3-x2),
又f(x)在(-3,3)上是减函数,
∴x-3>3-x2,即x2+x-6>0,
解得x>2或x<-3,综上得2<x<$\sqrt{6}$,即A={x|2<x<$\sqrt{6}$},
∴B=A∩{x|1≤x≤$\sqrt{5}$}={x|1≤x<$\sqrt{6}$},
又g(x)=5x2-21x+1=5(x-$\frac{21}{10}$)2-$\frac{421}{20}$知g(x)max=g(1)=-15,g(x)min=-$\frac{421}{20}$.

点评 本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知函数$f(x)=\frac{x}{2x+1}$,则f[f(x)]=$\frac{x}{4x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设P(x,y)是曲线C:$\left\{\begin{array}{l}{x=-2+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数,0≤θ<2π)上任意一点,
(1)将曲线化为普通方程;
(2)求$\frac{y}{x}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=$\frac{1}{|x-t|}$的定义域为A,函数g(x)=$\sqrt{{x}^{2}-x-2}$的定义域是B,若A∩B=B,求实数t的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}是等差数列,a1=2,且a2,a3,a4+1成等比数列.
(1)求数列{an}的通项公式an
(2)设bn=$\frac{1}{{{a}_{n}}^{2}-1}$,数列{bn}的前n项和为Sn,求证:Sn$<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若$\frac{sinθ+2cosθ}{sinθ-cosθ}$=2,则sinθ•cosθ=(  )
A.-$\frac{4}{17}$B.$\frac{4}{5}$C.$±\frac{4}{17}$D.$\frac{4}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列两个集合的并集和交集
(1)A={a,b,c},B={a,c,e,f};
(2)A={x|x>-2},B={x|x≤3};
(3)A={y|y=x2-2x},B={x|y=-x2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.log${\;}_{\frac{1}{2}}$[log3(x-2)]=0,则x=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(lg(x+1))的定义域[0,9],求函数f($\frac{x}{2}$)的定义域.

查看答案和解析>>

同步练习册答案