精英家教网 > 高中数学 > 题目详情
4.求下列两个集合的并集和交集
(1)A={a,b,c},B={a,c,e,f};
(2)A={x|x>-2},B={x|x≤3};
(3)A={y|y=x2-2x},B={x|y=-x2}.

分析 根据集合A和集合B之间的关系,然后根据交集,并集的定义进行求解.

解答 解:(1)A={a,b,c},B={a,c,e,f},∴A∩B={a,c},A∪B={a,b,c,e,f};
(2)A={x|x>-2},B={x|x≤3},∴A∩B={x|-2<x≤3},A∪B=R;
(3)A={y|y=x2-2x}=[-1,+∞),B={x|y=-x2}=R,∴A∩B=[-1,+∞),A∪B=R.

点评 本题考查集合的性质和应用,解题时要注意定义的合理运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.己知函数f(x)=2cos(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的最小正周期为π,x=-$\frac{π}{24}$为它的图象的一条对称轴.
(1)求函数f(x)的单调递增区间;
(2)在△ABC,a,b,c分别为角A,B,C的对应边,若f(-$\frac{A}{2}$)=$\sqrt{2}$,a=3,求b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax-b(a>0且a≠1).
(1)若f(x)的图象过点(2,2)和(4,14),求f(a-b);
(2)若f(x)的图象经过第二、三、四象限,求ab的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知奇函数f(x)是定义在(-3,3)上的减函数,不等式f(x-3)+f(x2-3)<0的解集为A,集合B=A∩{x|1≤x≤$\sqrt{5}$},求函数g(x)=5x2-21x+1,x∈B的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R),若f(-1)=0,且函数f(x)的值域为[0,+∞).
(1)求f(x)的表达式;
(2)当x∈[-2,2]时,求g(x)=f(x)-kx最小值h(k);
(3)当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=$\frac{2}{\sqrt{k{x}^{2}+4kx+3}}$.
(1)若f(x)定义域为R,求实数k的取值范围;
(2)若f(x)定义域为(-6,2),求实数k的值;
(3)若f(x)值域为(0,+∞),求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.己知f(x)是定义在R上的奇函数,当x>0时f(x)=x2-4x+3,则不等式f(x)≥0的解集用区间表示为[-3,-1]∪[0,1]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A、B、C所对的边分别是a、b、c满足:cosAcosC+sinAsinC+cosB=$\frac{3}{2}$,且a、b、c成等比数列.
(Ⅰ)求角B的大小;
(Ⅱ)若$\frac{a}{tanA}$+$\frac{c}{tanC}$=$\frac{2b}{tanB}$,a=2,判断三角形形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.写出与下列各角终边相同的角的集合S,并把S中在-360°~720°间的角写出来.
(1)70°;    (2)-53°;   (3)480°16′.

查看答案和解析>>

同步练习册答案