分析 把给出的数列递推式变形裂项,然后利用累加法求得数列通项公式.
解答 解:由${a_{n+1}}={a_n}+\frac{1}{(n+1)(n+2)}\begin{array}{l}{\;}{(n∈N*)}\end{array}$,得
${a}_{n+1}-{a}_{n}=\frac{1}{(n+1)(n+2)}=\frac{1}{n+1}-\frac{1}{n+2}$,
∴${a}_{2}-{a}_{1}=\frac{1}{2}-\frac{1}{3}$,
${a}_{3}-{a}_{2}=\frac{1}{3}-\frac{1}{4}$,
${a}_{4}-{a}_{3}=\frac{1}{4}-\frac{1}{5}$,
…
${a}_{n}-{a}_{n-1}=\frac{1}{n}-\frac{1}{n+1}$.
累加得:${a}_{n}-{a}_{1}=\frac{1}{2}-\frac{1}{n+1}=\frac{n-1}{2(n+1)}$.
又${a_1}=\frac{1}{2}$,
∴${a}_{n}=\frac{n-1}{2(n+1)}+\frac{1}{2}=\frac{n-1+n+1}{2(n+1)}=\frac{n}{n+1}$.
故答案为:${a}_{n}=\frac{n}{n+1}$.
点评 本题考查数列递推式,考查了累加法求数列的通项公式,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2) | B. | (-∞,2) | C. | ($\frac{1}{2}$,+∞) | D. | (2,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com