精英家教网 > 高中数学 > 题目详情
7.一个三角形在其直观图中对应一个边长为2的正三角形,原三角形的面积为2$\sqrt{6}$.

分析 求出边长为2的正三角形的面积,再利用原图与直观图的面积比求出对应的体积即可.

解答 解:∵三角形的直观图是一个边长为2正三角形,
∴S直观图=$\frac{1}{2}$×22×sin60°=$\sqrt{3}$,
又S原图=S直观图•2$\sqrt{2}$=$\sqrt{3}$×2$\sqrt{2}$=2$\sqrt{6}$.
故答案为:2$\sqrt{6}$.

点评 本题考查了直观图的应用问题,解题时应了解原图面积与直观图面积的关系是多少,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.将下列三角函数化为0°~45°内的角的三角函数.
(1)sin66°;
(2)cos74°;
(3)cos118°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知?x∈(0,+∞),[(m-1)x-1](x2-mx-1)≥0恒成立,则m的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等比数列{an}的各项均为正数,公比q≠1,设P=$\frac{1}{2}$(${log_{\frac{1}{2}}}{a_5}+{log_{\frac{1}{2}}}{a_7}$),Q=${log_{\frac{1}{2}}}\frac{{{a_3}+{a_9}}}{2}$,则P与Q的大小关系是(  )
A.P≥QB.P<QC.P≤QD.P>Q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=2sin(ωx+φ)(ω>0,一$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则(  )
A.函数f(x)的最小正周期是2π
B.函数f(x)的图象可由函数g(x)=2sin2x的图象向右平移$\frac{π}{3}$个单位长度得到
C.函数f(x)的图象关于直线x=一$\frac{π}{12}$对称
D.函数f(x)在区间[-$\frac{7π}{12}$+kπ,-$\frac{π}{12}$+kπ](k∈Z)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.冬季供暖就要开始,现分配出5名水暖工去3个不同的居民小区检查暖气管道,每名水暖工只去一个小区,且每个小区都要有人去检查,那么分配的方案共有150种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个圆锥的轴截面为正三角形,其边长为a,则其表面积为(  )
A.$\frac{5}{4}{a^2}$πB.a2πC.$\frac{3}{4}{a^2}$πD.$\frac{1}{4}{a^2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.满足2n-1<(n+1)2的最大正整数n的取值是(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=4x5+3x3+2x+1,则$f({log_2}3)+f({log_{\frac{1}{2}}}3)$=2.

查看答案和解析>>

同步练习册答案