精英家教网 > 高中数学 > 题目详情
下列函数是奇函数的有(填序号)______.
①f(x)=x|x|,
②f(x)=x+
1
x

③f(x)=2x+1,
④f(x0=-x2+1.
对于①,函数定义域为R,且f(-x)=-x|x|=-f(x),故f(x)=x|x|为奇函数;
对于②,定义域为(-∞,0)∪(0,+∞),关于原点对称,且f(-x)=-x-
1
x
=-f(x),所以f(x)=x+
1
x
为奇函数;
对于③,函数定义域为R,f(-x)=-2x+1≠-f(x),且f(-x)≠f(x),故函数f(x)=2x+1为非奇非偶函数;
对于④,函数定义域为R,f(-x)=-x2+1=f(x),为偶函数.
故答案为:①②
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知命题p:1-a•2x≥0在x∈(-∞,0]恒成立,命题q:?x∈R,ax2-x+a>0.若命题p或q为真,命题p且q为假,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)为定义域为R的奇函数,当x>0时,f(x)=x2-2x,
(1)求出函数f(x)在R上的解析式;
(2)画出函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=
1-x2
丨x+1丨+丨x-2丨
,则f(x)是(  )
A.是奇函数,而非偶函数B.是偶函数,而非奇函数
C.既是奇函数又是偶函数D.是非奇非偶函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)是定义在R上的偶函数,且f(x)在区间(-∞,0)上是减函数,若f(x-1)<f(2),则实数x的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数y=
1-x2
|x+1|+|x-2|
是 ______(填奇函数,偶函数,非奇非偶函数,奇函数又是偶函数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则(  )
A.f(x)与g(x)均为偶函数
B.f(x)为奇函数,g(x)为偶函数
C.f(x)与g(x)均为奇函数
D.f(x)为偶函数,g(x)为奇函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=ax2+bx-2是定义在[1+a,2]上的偶函数,则f(x)在区间[1,2]上是(  )
A.增函数B.减函数
C.先增后减函数D.先减后增函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知不等式|x-3|+|x-4|≥m的解集为R,则实数m的取值范围(  )
A.m<1B.m≤1C.m≤
1
10
D.m<
1
10

查看答案和解析>>

同步练习册答案