精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x
(1)试求函数F(x)=f(x)+af(2x),x∈(-∞,0]的最大值;
(2)若存在x∈(-∞,0),使|af(x)-f(2x)|>1成立,试求a的取值范围;
(3)当a>0,且x∈[0,15]时,不等式f(x+1)≤f[(2x+a)2]恒成立,求a的取值范围.
(1)F(x)max=
1+a,a>-
1
2
1
4a
,a≤-
1
2

(2)令2x=t,则存在t∈(0,1)使得|t2-at|>1
所以存在t∈(0,1)使得t2-at>1或t2-at<-1
即存在t∈(0,1)使得a<(t-
1
t
)max或a>(t+
1
t
)min

∴a<0或a≥2;
(3)由f(x+1)≤f[(2x+a)2]得x+1≤(2x+a)2恒成立
因为a>0,且x∈[0,15],所以问题即为
x+1
≤2x+a
恒成立
a≥(-2x+
x+1
)max

设m(x)=-2x+
x+1
x+1
=t,则x=t2-1,t∈[1,4]

m(t)=-2(t2-1)+t=-2(t-
1
4
)2+
17
8

所以,当t=1时,m(x)max=1∴a≥1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案