【题目】互联网使我们的生活日益便捷,网络外卖也开始成为不少人日常生活中不可或缺的一部分,某市一调查机构针对该市市场占有率较高的甲、乙两家网络外卖企业(以下外卖甲、外卖乙)的经营情况进行了调查,调查结果如下表:
1日 | 2日 | 3日 | 4日 | 5日 | |
外卖甲日接单x(百单) | 5 | 2 | 9 | 8 | 11 |
外卖乙日接单y(百单) | 2 | 3 | 10 | 5 | 15 |
(1)试根据表格中这五天的日接单量情况,从统计的角度说明这两家外卖企业的经营状况;
(2)据统计表明,y与x之间具有线性关系.
①请用相关系数r对y与x之间的相关性强弱进行判断;(若,则可认为y与x有较强的线性相关关系(r值精确到0.001))
②经计算求得y与x之间的回归方程为,假定每单外卖业务企业平均能获纯利润3元,试预测当外卖乙日接单量不低于25百单时,外卖甲所获取的日纯利润的大致范围.(x值精确到0.01)
相关公式:,
参考数据:.
【答案】(1)外卖甲平均日接单与乙相同﹐但外卖甲日接单量更集中一些,所以外卖甲比外卖乙经营状况更好.(2)①可认为y与x之间有较强的线性相关关系;②外卖甲所获取的日纯利润大约不低于6006元.
【解析】
(1)求得甲乙两个企业的平均值,再根据数据的集中情况综合比较即可.
(2)根据参考公式和数据,代入计算得,即可判断相关性的强弱;根据乙外卖的接单量,可先求得甲外卖的日接单量的最小值.根据利润即接单量即可求得日纯利润的范围.
(1)由题可知,(百单),
(百单)
外卖甲的日接单量的方差为,
外卖乙的日接单量的方差,
因为,,即外卖甲平均日接单与乙相同,但外卖甲日接单量更集中一些,所以外卖甲比外卖乙经营状况更好.
(2)①因为
由:
代入计算可得,相关系数
所以可认为y与x之间有较强的线性相关关系;
②令,得
解得,
又,
所以当外卖乙日接单量不低于25百单时,外卖甲所获取的日纯利润大约不低于6006元.
科目:高中数学 来源: 题型:
【题目】(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
有时可用函数
描述学习某学科知识的掌握程度,其中x表示某学科知识的学习次数(),表示对该学科知识的掌握程度,正实数a与学科知识有关.
(1) 证明:当时,掌握程度的增加量总是下降;
(2) 根据经验,学科甲、乙、丙对应的a的取值区间分别为,,
.当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学学校对高三年级文科学生进行了一次自主学习习惯的自评满意度的调查,按系统抽样方法得到了一个自评满意度(百分制,单位:分)的样本,如图分别是该样本数据的茎叶图和频率分布直方图(都有部分缺失).
(1)完善频率分布直方图(需写出计算过程);
(2)分别根据茎叶图和频率分布直方图求出样本数据的中位数m1和m2,并指出选用哪一个数据来估计总体的中位数更合理(需要叙述理由).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,分别过椭圆左、右焦点的动直线相交于点,与椭圆分别交于与不同四点,直线的斜率满足, 已知与轴重合时, .
(1)求椭圆的方程;
(2)是否存在定点使得为定值,若存在,求出点坐标并求出此定值,若不存在,
说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地自2014年至2019年每年年初统计所得的人口数量如下表所示:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
人数/千人 | 2082 | 2135 | 2203 | 2276 | 2339 | 2385 |
(1)根据表中的数据计算2014年至2018年每年该地人口的增长数量,并描述该地人口数量的变化趋势;
(2)研究人员用函数拟合该地的人口数量,其中的单位是年,2014年初对应时刻的单位是干人,设的反函数为求的值(精确到0.1),并解释其实际意义.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第十一届全国少数民族传统体育运动会在河南郑州举行,某项目比赛期间需要安排3名志愿者完成5项工作,每人至少完成一项,每项工作由一人完成,则不同的安排方式共有多少种
A.60B.90C.120D.150
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】水污染现状与工业废水排放密切相关,某工厂深人贯彻科学发展观,努力提高污水收集处理水平,其污水处理程序如下:原始污水必先经过A系统处理,处理后的污水(A级水)达到环保标准(简称达标)的概率为p(0<p<1).经化验检测,若确认达标便可直接排放;若不达标则必须进行B系统处理后直接排放.
某厂现有4个标准水量的A级水池,分别取样、检测,多个污水样本检测时,既可以逐个化验,也可以将若干个样本混合在一起化验,混合样本中只要有样本不达标,则混合样本的化验结果必不达标,若混合样本不达标,则该组中各个样本必须再逐个化验;若混合样本达标,则原水池的污水直接排放
现有以下四种方案:
方案一:逐个化验;
方案二:平均分成两组化验;方案三;三个样本混在一起化验,剩下的一个单独化验;
方案四:四个样本混在一起化验.
化验次数的期望值越小,则方案越"优".
(1)若,求2个A级水样本混合化验结果不达标的概率;
(2)①若,现有4个A级水样本需要化验,请问:方案一、二、四中哪个最“优"?②若“方案三”比“方案四"更“优”,求p的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义一:对于一个函数,若存在两条距离为d的直线和,使得在时,恒成立,则称函数在D内有一个宽度为d的通道.定义二:若一个函数,对于任意给定的正数,都存在一个实数,使得函数在内有一个宽度为的通道,则称在正无穷处有永恒通道.下列函数:①;②;③.其中在正无穷处有永恒通道的函数的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的部分图象如图所示.
(1) 求函数的解析式;
(2) 如何由函数的通过适当图象的变换得到函数的图象, 写出变换过程;
(3) 若,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com