精英家教网 > 高中数学 > 题目详情

【题目】如图2,四边形为矩形, 平面,作如图3折叠,折痕 ,其中点分别在线段上,沿折叠后点叠在线段上的点记为,并且.1)证明: 平面;

2)求三棱锥的体积.

【答案】1)见解析(2

【解析】试题分析:(1)要证CF⊥平面MDF,只需证CF⊥MD,且CF⊥MF即可;由PD⊥平面ABCD,得出平面PCD⊥平面ABCD,即证MD⊥平面PCD,得CF⊥MD;(2)求出△CDE的面积SCDE,对应三棱锥的高MD,计算它的体积VM-CDE

试题解析:(1)证明:∵PD⊥平面ABCDPD平面PCD

平面PCD⊥平面ABCD

又平面PCD∩平面ABCD=CDMD平面ABCDMD⊥CD

∴MD⊥平面PCDCF平面PCD∴CF⊥MD

CF⊥MFMDMF平面MDFMD∩MF=M

∴CF⊥平面MDF

2∵CF⊥平面MDF∴CF⊥DF

又易知PCD=60°∴∠CDF=30°CF=CD=

EFDC,即

=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆的左、右焦点分别为,且离心率为,点为椭圆上一动点, 内切圆面积的最大值为.

(1)求椭圆的方程;

(2)设椭圆的左顶点为,过右焦点的直线与椭圆相交于两点,连接并延长分别交直线两点,以为直径的圆是否恒过定点?若是,请求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).

(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知10件不同产品中共有4件次品,现对它们进行一一测试,直至找到所有次品为止.
(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品的不同测试方法数有多少种?
(2)若恰在第5次测试后,就找出了所有次品,则这样的不同测试方法数有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨,生产每吨乙产品要用A原料1吨,B原料3吨。销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨,那么该企业可获得最大利润是___________万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面上,点A、C为射线PM上的两点,点B、D为射线PN上两点,则有(其中S△PAB、S△PCD分别为△PAB、△PCD的面积);空间中,点A、C为射线PM上的两点,点B、D为射线PN上的两点,点E、F为射线PL上的两点,则有=___________.(其中VP-ABE、VP-CDF分别为四面体P-ABE、P-CDF的体积)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=(x2﹣3)ex , 当m在R上变化时,设关于x的方程f2(x)﹣mf(x)﹣ =0的不同实数解的个数为n,则n的所有可能的值为(
A.3
B.1或3
C.3或5
D.1或3或5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的中心在原点,焦点分别在轴与轴上,它们有相同的离心率,并且的短轴为的长轴,的四个焦点构成的四边形面积是.

(1)求椭圆的方程;

(2)设是椭圆上非顶点的动点,与椭圆长轴两个顶点的连线分别与椭圆交于点.

(i)求证:直线斜率之积为常数;

(ii)直线与直线的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 = =(4sinx,cosx﹣sinx),f(x)=
(1)求函数f(x)的解析式;
(2)已知常数ω>0,若y=f(ωx)在区间 是增函数,求ω的取值范围;
(3)设集合A= ,B={x||f(x)﹣m|<2},若AB,求实数m的取值范围.

查看答案和解析>>

同步练习册答案