精英家教网 > 高中数学 > 题目详情

【题目】平面上,点A、C为射线PM上的两点,点B、D为射线PN上两点,则有(其中S△PAB、S△PCD分别为△PAB、△PCD的面积);空间中,点A、C为射线PM上的两点,点B、D为射线PN上的两点,点E、F为射线PL上的两点,则有=___________.(其中VP-ABE、VP-CDF分别为四面体P-ABE、P-CDF的体积)。

【答案】

【解析】PM与平面PDF所成的角为α

A到平面PDF的距离h1=PAsinα,C到平面PDF的距离h2=PCsinα

VPABE=VAPBE=SPBEh1=××PB×PE×sinNPL×PAsinα

VPCDF=VCPDF=SPDFh2=××PD×PF×sinNPL×PCsinα

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系 中,以坐标原点O为极点,以x轴正半轴为极轴建立极坐标系.已知曲线 (t为参数),曲线 ;
(1)将曲线 化成普通方程,将曲线 化成参数方程;
(2)判断曲线 和曲线 的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的展开式的二项式系数之和为32,且展开式中含x3项的系数为80.
(1)求m和n的值;
(2)求展开式中含x2项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=kax(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).
(1)求函数f(x)的解析式;
(2)若函数g(x)= 是奇函数,求b的值;
(3)在(2)的条件下判断函数g(x)在(0,+∞)上的单调性,并用定义证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图2,四边形为矩形, 平面,作如图3折叠,折痕 ,其中点分别在线段上,沿折叠后点叠在线段上的点记为,并且.1)证明: 平面;

2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+c在x=﹣1与x=2处都取得极值. (Ⅰ)求a,b的值及函数f(x)的单调区间;
(Ⅱ)若对x∈[﹣2,3],不等式f(x)+ c<c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经济学中,函数f(x)的边际函数M(x)定义为M(x)=f(x+1)﹣f(x),利润函数p(x)边际利润函数定义为M1(x)=p(x+1)﹣p(x),某公司最多生产 100 台报系统装置,生产x台的收入函数为R(x)=3000x﹣20x2(单位:元),其成本函数为C(x)=500x+4000x(单位:元),利润是收入与成本之差.
(1)求利润函数p(x)及边际利润函数M1(x);
(2)利润函数p(x)与边际利润函数M1(x)是否具有相等的最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=( x
(1)求函数f(x)的解析式;
(2)在所给坐标系中画出函数f(x)的图象,并根据图象写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算
(1)已知f(x)=(x2+2x)ex , 求f′(﹣1);
(2)∫ cos2 dx.

查看答案和解析>>

同步练习册答案