精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x﹣1),已知当x∈[0,1]时,f(x)=( 1x , 则
①2是函数f(x)的一个周期;
②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;
③函数f(x)的最大值是1,最小值是0;
④x=1是函数f(x)的一个对称轴;
⑤当x∈(3,4)时,f(x)=( x3
其中所有正确命题的序号是

【答案】①②④⑤
【解析】解:∵f(x+1)=f(x﹣1),
∴f(x+2)=f[(x+1)+1]=f[(x+1)﹣1]=f(x),
即①2是函数f(x)的一个周期,正确;
当x∈[0,1]时,f(x)=( 1x为增函数;
由函数f(x)是定义在R上的偶函数,
可得:当x∈[﹣1,0]时,f(x)为减函数;
再由函数的周期为2,可得:
②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,正确;
由②得:当x=2k,k∈Z时,函数取最小值
当x=2k+1,k∈Z时,函数取最大值1,
故③函数f(x)的最大值是1,最小值是0,错误;
由②得:④x=k,k∈Z均为函数图象的对称轴,
故④x=1是函数f(x)的一个对称轴,正确;
⑤当x∈(3,4)时,4﹣x=(0,1),
即f(4﹣x)=f(2﹣x)=f(﹣x)=f(x)=( 1﹣(4x=( x3
即④f(x)=( x3 . 正确
所以答案是:①②④⑤
【考点精析】本题主要考查了命题的真假判断与应用的相关知识点,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.

(1)证明:CF⊥平面ADF;
(2)求二面角D﹣AF﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinxcos(x﹣ )+cos2x﹣
(1)求函数f(x)的最大值,并写出f(x)取最大值x时的取值集合;
(2)若f(x0)= ,x0∈[ ],求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+ )(A>0,ω>0)的图象在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0 , 2)和(x0+ ,﹣2).
(1)求函数f(x)的解析式;
(2)求sin(x0+ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x+1|+|x﹣4|﹣a.
(1)当a=1时,求函数f(x)的最小值;
(2)若f(x)≥ +1对任意的实数x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生产某种产品q个单位时成本函数为C(q)=200+0.05q2,求:

(1)生产90个单位该产品时的平均成本;

(2)生产90个到100个单位该产品时,成本的平均变化率;

(3)生产第100个单位该产品时,成本的变化率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}中,Sn为其前n项和,已知a2=2,S5=15,数列{bn},b1=1,对任意n∈N+满足bn+1=2bn+1.
(1)数列{an}和{bn}的通项公式;
(2)设cn= ,设数列{cn}的前n项和Tn , 证明:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示.已知两组技工在单位时间内加工的合格零件平均数都为

(1)分别求出mn的值;

(2)分别求出甲、乙两组技工在单位时间内加工的合格零件的方差,并由此分析两组技工的加工水平;

(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件个数之和大于18,则称该车间“质量合格”,求该车间“质量合格”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知分别为椭圆C:的左、右焦点,点在椭圆C上.

(1)求的最小值;

(2)已知直线l与椭圆C交于两点AB,过点且平行于直线l的直线交椭圆C于另一点Q,问:四边形PABQ能否成为平行四边形?若能,请求出直线l的方程;若不能,请说明理由.

查看答案和解析>>

同步练习册答案