精英家教网 > 高中数学 > 题目详情
11.已知a,b,c三个数成等差数列,其中a=5+2$\sqrt{6}$,c=5-2$\sqrt{6}$,则b的值为(  )
A.2$\sqrt{6}$B.$\sqrt{6}$C.5D.10

分析 利用等差中项直接求解即可.

解答 解:a,b,c三个数成等差数列,其中a=5+2$\sqrt{6}$,c=5-2$\sqrt{6}$,
则b=$\frac{a+c}{2}$=$\frac{5+2\sqrt{6}+5-2\sqrt{6}}{2}$=5.
故选:C.

点评 本题考查等差数列的性质,等差中项的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.过原点且倾斜角为60°的直线与圆x2+y2-4y=0相交,则圆的半径为2直线被圆截得的弦长为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)的定义域为R,若存在常数k>0,使|f(x)|≤$\frac{k}{2015}$|x|对一切实数x均成立,则称f(x)为“海宝”函数.给出下列函数:
①f(x)=x2;②f(x)=sinx+cosx;③f(x)=$\frac{x}{{x}^{2}+x+1}$;④f(x)=3x+1
其中f(x)是“海宝”函数的序号为③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在等腰梯形ABCD中,AB∥CD,AB=BC=AD=2,CD=4,E为边DC的中点.如图1.将△ADE沿AE折起到△AEP位置,连PB、PC,点Q是棱AE的中点,点M在棱PC上,如图2.
(1)若PA∥平面MQB,求PM:MC;
(2)若平面AEP⊥平面ABCE,点M是PC的中点,求三棱锥A-MQB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=2x2+4x-1图象可由y=2(x+1)2的图象向下平移3个单位得到.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一块边长为10cm的正方形铁片按如图所示的阴影部分截下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥(底面是正方形,从顶点向底面作垂线,垂足是底面中心的四棱锥)形容器.
(1)试把容器的容积V表示为x的函数.
(2)若x=6,
①求图2的主视图的面积;
②求异面直线EB与DC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.由“正三角形的内切圆切于三边的中点”可类比猜想:正四面体的内切球切于四个面(  )
A.各正三角形内一点B.各正三角形的某高线上的点
C.各正三角形的中心D.各正三角形外的某点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图给出的是计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{10}$的值的一个流程图,其中判断框内应填入的条件是(  )
A.i>5B.i<5C.i>10D.i<10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=f(x)是R上的奇函数,当x<0时,f(x)=2x,则当x>0时,f(x)=(  )
A.-2xB.2-xC.-2-xD.2x

查看答案和解析>>

同步练习册答案