分析 根据集合A满足{1}?A⊆{1,2,3,4},列举出所有A,可得答案.分析A的个数与A中不确定元素个数的关系,可得到一个一般性规律.
解答 解:∵集合A满足{1}?A⊆{1,2,3,4},
∴满足条件的A可以有7个,分别为:{1,2},{1,3},{1,4},{1,2,3},{1,2,4},{1,3,4},{1,2,3,4},
由于A中有3个不确定元素,且{1}?A,故满足条件的A的个数为:23-1=7,
若集合A满足{1,2,3}?A⊆{1,2,3…,9,10},
即A中有7个不确定元素,且{1,2,3}?A,故满足条件的A的个数为:27-1=127
点评 本题给出集合的包含关系,求满足条件集合M的个数.考查了集合的包含关系的理解和子集的概念等知识,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 乙,甲,丙 | B. | 甲,丙,乙 | C. | 甲,乙,丙 | D. | 丙,甲,乙 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com