精英家教网 > 高中数学 > 题目详情

【题目】已知圆M过点A(1,3),B(4,2),且圆心在直线y=x﹣3上.
(Ⅰ)求圆M的方程;
(Ⅱ)若过点(﹣4,1)的直线l与圆M相切,求直线l的方程.

【答案】解:(Ⅰ)∵圆M过点A(1,3),B(4,2),

∴线段AB的中点坐标为( ),直线AB的斜率kAB= =﹣

∴AB的中垂线方程为y﹣ =3(x﹣ ),即y=3x﹣5,

∵圆心M在直线y=x﹣3上.∴由 ,得M(1,﹣2),

∴r=|MA|= =5,

∴圆M的方程为(x﹣1)2+(y+2)2=25.

(Ⅱ)当直线l的方程为x=﹣4时,符合条件,

当直线l的斜率存在时,设直线l的方程为:y﹣1=k(x+4),即kx﹣y+4k+1=0,

圆心M到直线l的距离d= =5,解得k=

∴y=

综上,直线l的方程为x=﹣4或y=


【解析】(Ⅰ)求出线段AB的中点坐标为( ),直线AB的斜率kAB=﹣ ,从而得到AB的中垂线方程为y=3x﹣5,再由圆心M在直线y=x﹣3上,联立方程组,求出圆心M,从而求出r=|MA|,由此能求出圆M的方程.(Ⅱ)当直线l的方程为x=﹣4时,符合条件,当直线l的斜率存在时,设直线l的方程为kx﹣y+4k+1=0,则圆心M到直线l的距离d= =5,求出k,由此能求出直线l的方程.
【考点精析】解答此题的关键在于理解圆的标准方程的相关知识,掌握圆的标准方程:;圆心为A(a,b),半径为r的圆的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在二项式( + n展开式中,前三项的系数成等差数列. 求:(1)展开式中各项系数和;
【答案】解:由题意得2 × =1+ ×
化为:n2﹣9n+8=0,解得n=1(舍去)或8.
∴n=8.
中,令x=1,可得展开式中各项系数和= =
(1)展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=9x+m3x , 若存在实数x0 , 使得f(﹣x0)=﹣f(x0)成立,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l过定点P(0,1),且与直线l1x3y100l22xy80分别交于AB两点.若线段AB的中点为P,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a<﹣1,函数f(x)=|x3﹣1|+x3+ax(x∈R).
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)已知存在实数m,n(m<n≤1),对任意t0∈(m,n),总存在两个不同的t1 , t2∈(1,+∞),
使得f(t0)﹣2=f(t1)=f(t2),求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F为双曲线 =1(a>b>0)的右焦点,过点F的直线分别交两条渐近线于A,B两点,OA⊥AB,若2|AB|=|OA|+|OB|,则该双曲线的离心率为(
A.
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD-A1B1C1D1中,如图.

1求证:平面AB1D1∥平面C1BD;

2试找出体对角线A1C与平面AB1D1和平面C1BD的交点E,F,并证明:A1E=EF=FC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 )的图象关于直线对称,且图像上相邻两个最高点的距离为

(1)求函数的解析式以及它的单调递增区间;

(2)是否存在实数,满足不等式?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:函数y=sin2x的最小正周期为 ;命题q:函数y=cosx的图象关于直线x= 对称.则下列判断正确的是(
A.p为真
B.¬q为假
C.p∧q为假
D.p∨q为真

查看答案和解析>>

同步练习册答案