精英家教网 > 高中数学 > 题目详情
设抛物线的准线为为抛物线上的点,,垂足为,若得面积与的面积之比为,则点坐标是                 
(2, )或(2,- )
解:△PQF与△POF 的高相等,都等于P的纵坐标的绝对值,因此,△PQF的面积与△POF的面积之比=PQ:FO=3:1,该抛物线的焦点F的坐标为(1,0),故:FO=1,则PQ=3,又该抛物线的准线l为x=-1,P距离准线的距离为3,则推知P的横坐标则为2代入抛物线方程,即可求出P的纵坐标,为 或- .P点坐标是(2, )或(2,- ).
故答案为:(2, )或(2,- )
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若抛物线y2=4x的焦点是F准线是l,则过点F和点M(4,4)且与准线l相切的圆有(  )
A.0个B.1个C.2个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知P,Q为抛物线上两点,点P,Q的横坐标分别为4,2,过P、Q分别作抛物线的切线,两切线交于A,则点A的纵坐标为__________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线上与焦点的距离等于5的点的横坐标是 (     )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线焦点的直线与抛物线交于两点,,且AB中点的纵坐标为,则的值为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知:曲线上任意一点到点的距离与到直线的距离相等.
(1)求曲线的方程;
(2)如果直线交曲线两点,是否存在实数,使得以为直径的圆经过原点?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设抛物线的焦点为,准线为,为抛物线上一点, ,为垂足.如果直线的斜率为,那么
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线y=的焦点坐标是______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过抛物线的焦点F的直线AB交抛物线于A,B两点,弦AB的中点为M,过M作AB的垂直平分线交x轴于N,
(1)求证:          
(2)过A,B的抛物线的切线相交于P,求P的轨迹方程.

查看答案和解析>>

同步练习册答案