精英家教网 > 高中数学 > 题目详情

在数列an中,a1=2,an+1=2an+2n+1(n∈N).
(1)求证:数列数学公式为等差数列;
(2)若m为正整数,当数学公式

解:(I)由an+1=2an+2n+1变形得:
故数列是以为首项,1为公差的等差数列
(II)由(I)得an=n•2n

=

为递减数列.
当m=n时,f(n)>f(n+1)
∴当m≥n≥2时,f(n)递减数列.

要证:时,
=
故原不等式成立.
分析:(I)把题设中数列递推式变形得,根据等差数列的定义判断出数列是等差数列.
(II)根据(I)可求得数列的通项公式,进而求得an,令f(n)=,则可表示出f(n+1),进而求得当m≥n≥2时的表达式,进而求得解决大于1,判断出f(n)为递减数列,进而可推断出f(n)的最大值为
f(2),进而问题转化为证明f(2)≤.进而根据推断出进而可知原式得证.
点评:本题主要考查了等差关系的确定,数列与不等式的综合运用.考查了考生综合分析问题和演绎推理的能力,转化和化归思想的运用.属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,a1≠0,an=2an-1(n≥2,n∈N*),前n项和为Sn,则
S4
a2
=
15
2
15
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=2,a2=8,且已知函数f(x)=
1
3
(an+2-an+1)x3-(3an+1-4an)x
 ,(n∈N*)
在x=1时取得极值.
(1)证明数列{an+1-2an}是等比数列,并求数列{an}的通项;
(2)设3nbn=(-1)nan,且|b1|+|b2|+…+|bn|<m-3n(
2
3
)n+1
对于n∈N*恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=-2,2an+1=2an+3,则a11等于(  )
A、
27
2
B、10
C、13
D、19

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州二模)已知函数f(x)=
(x+1)4+(x-1)4(x+1)4-(x-1)4
(x≠0).
(Ⅰ)若f(x)=x且x∈R,则称x为f(x)的实不动点,求f(x)的实不动点;
(Ⅱ)在数列{an}中,a1=2,an+1=f(an)(n∈N*),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广元三模)在数列{an}中,a1=l,a2=2,且an+2-an=1+(-1
)
n
 
(n∈
N
+
 
)
,则其前100项之和S100=
2600
2600

查看答案和解析>>

同步练习册答案