精英家教网 > 高中数学 > 题目详情
求下列各式的值.
(1)lo
g
35
5
+2log
1
2
2
-lo
g
1
50
5
-lo
g
14
5

(2)log2
1
25
×log3
1
8
×log5
1
9
考点:对数的运算性质
专题:函数的性质及应用
分析:(1)利用对数的运算法则求解.
(2)利用对数换底公式求解.
解答: 解:(1)lo
g
35
5
+2log
1
2
2
-lo
g
1
50
5
-lo
g
14
5

=log5(35×50×
1
14
)
-1
=3-1=2.
(2)log2
1
25
×log3
1
8
×log5
1
9

=
lg
1
25
lg2
×
lg
1
8
lg3
×
lg
1
9
lg5

=(-2)×(-3)×(-2)
=-12.
点评:本题考查对数式求值,是基础题,解题时要注意对数的性质和运算法则的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知cos
α
2
-sin
α
2
=
1
5
,求sinα的值;
(2)化简:
sin(2π-α)cos(π-α)cos(
π
2
+α)cos(
11π
2
-α)
sin(π+α)sin(5π-α)sin(-π-α)sin(
2
-α)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,A>B,且tanA与tanB是方程x2-5x+6=0的两个根.
(Ⅰ)求tan(A+B)的值;
(Ⅱ)若AB=
5
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在半径为4的半圆形铁皮内剪取一个内接矩形ABCD,如图(B,C两点在直径上,A,D两点在半圆周上),以边AB为母线,矩形ABCD为侧面围成一个圆柱,当圆柱侧面积最大时,该圆柱的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=exsinx在区间[0,
π
2
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:x2+y2-2x-4y+m=0.
(1)当m为何值时,曲线C表示圆;
(2)在(1)的条件下,若曲线C与直线3x+4y-6=0交于M、N两点,且|MN|=3
3
,求m的值;
(3)在(1)的条件下,设直线x-y-1=0与圆C交于A,B两点,是否存在实数m,使得以AB为直径的圆过原点,若存在,求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,公园要把一块边长为2a的等边三角形ABC的边角地修成草坪,DE把草坪分成面积相等的两部分,D在AB上,E在AC上.
(1)设AD=x(x≥a),DE=y,试用x表示函数y;
(2)如果DE是灌溉水管,希望它最短,D、E的位置应该在哪里?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-sin2x
cosx

(Ⅰ)若f(x)>0,求x的取值范围;
(Ⅱ)设α是第四象限的角,且tanα=-
4
3
,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C的对边分别为a,b,c,则总有a+b>c.由正弦定理得sinA+sinB>sinC.由导数公式:(sinx)′=cosx,可以得到结论:对任意△ABC有cosA+cosB>cosC.上述结论是否正确?如果不正确,请举出反例,并指出推导过程中的错误.

查看答案和解析>>

同步练习册答案