精英家教网 > 高中数学 > 题目详情
设函数f(x)的定义域、值域均为R,f(x)的反函数为f-1(x),且对任意实数x,均有f(x)+f-1(x)<
5
2
x
,定义数列an:a0=8,a1=10,an=f(an-1),n=1,2,….
(1)求证:an+1+an-1
5
2
an(n=1,2,…)

(2)设bn=an+1-2an,n=0,1,2,….求证:bn<(-6)(
1
2
)n
(n∈N*);
(3)是否存在常数A和B,同时满足①当n=0及n=1时,有an=
A•4n+B
2n
成立;②当n=2,3,…时,有an
A•4n+B
2n
成立.如果存在满足上述条件的实数A、B,求出A、B的值;如果不存在,证明你的结论.
分析:(1)在已知f(x)+f-1(x)<
5
2
x
中,令x=an,利用函数、反函数求值知识,根据an=f(an-1)则f-1(an)=an-1,化简整理即可证得;
(2)将(1)变形构造,得出an+1-2an
1
2
(an-2an-1)
,即有bn
1
2
bn-1
(n∈N*),连续递推即可证得;
(3)先由①解得A=B=4,再用数学归纳法证明若②能同时成立,则存在,且A=B=4,否则不存在.
解答:解:(1)∵f(x)+f-1(x)<
5
2
x
,令x=an,∴f(an)+f-1(an)<
5
2
an

an+1+a n-1
5
2
an

(2)∵an+1
5
2
an-an-1
,∴an+1-2an
1
2
(an-2an-1)

bn
1
2
bn-1
.∵b0=a1-2a0=-6,
bn
1
2
bn-1(
1
2
)
2
bn-2<…<(
1
2
)
n
b0=(-6)(
1
2
)
n
(n∈N*).
(3)由(2)可知:an+1<2an+(-6)(
1
2
)n

假设存在常数A和B,使得an=
A•4n+B
2n
对n=0,1成立,
a0=A+B=8
a1=
4A+B
2
=10
,解得A=B=4.
下面用数学归纳法证明an
4n+4
2n
对一切n≥2,n∈N成立.
1°当n=2时,由an+1+an-1
5
2
an
,得a2
5
2
a1-a0=
5
2
×10-8=17=
42+4
22

∴n=2时,an
4n+4
2n
成立.
2°假设n=k(k≥2),不等式成立,即ak
4k+4
2k

ak+1<2ak+(-6)(
1
2
)k
4k+8
2k
+
-6
2k
=
4k+2
2k
=
4k+1+4
2k+1

即是说当n=k+1时,不等式也成立.
所以存在A,B,且A=B=4.
点评:本题考查反函数的概念、不等式的证明、数学归纳法的应用,考查变形转化构造、归纳推理、分析解决、计算等能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-
3
2
)与b=f(
15
2
)的大小关系为
a>b
a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)为定义在[0,1]上的非减函数,且满足以下三个条件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③当x∈[0,
1
4
]
时,f(x)≥2x恒成立.则f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-数学公式)与b=f(数学公式)的大小关系为________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省蚌埠二中高三(上)12月月考数学试卷(文科)(解析版) 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-)与b=f()的大小关系为   

查看答案和解析>>

科目:高中数学 来源:山东省月考题 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x﹣cosx,则a=f(﹣)与b=f()的大小关系为(    ).

查看答案和解析>>

同步练习册答案