【题目】如图1,四边形
为正方形,延长
至
,使得
,将四边形
沿
折起到
的位置,使平面
平面
,如图2.
![]()
(1)求证:
平面
;
(2)求异面直线
与
所成角的大小;
(3)求平面
与平面
所成锐二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】某轮船公司的一艘轮船每小时花费的燃料费与轮船航行速度的平方成正比,比例系数为
轮船的最大速度为15海里
小时
当船速为10海里
小时,它的燃料费是每小时96元,其余航行运作费用(不论速度如何)总计是每小时150元
假定运行过程中轮船以速度v匀速航行.
求k的值;
求该轮船航行100海里的总费用
燃料费
航行运作费用
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角三角形
中,
,点
分别在边
和
上(
与
不重合),将
沿
翻折,
变为
,使顶点
落在边
上(
与
不重合),设
.
![]()
(1)若
,求线段
的长度;
(2)用
表示线段
的长度;
(3)求线段
长度的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】北京时间3月15日下午,谷歌围棋人工智能
与韩国棋手李世石进行最后一轮较量,
获得本场比赛胜利,最终人机大战总比分定格
.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否有
的把握认为“围棋迷”与性别有关?
![]()
非围棋迷 | 围棋迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为
。若每次抽取的结果是相互独立的,求
的分布列,期望
和方差
.
附:
,其中
.
| 0.05 | 0.01 |
| 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,梯形
中,
,
,
,
,
为
中点.将
沿
翻折到
的位置, 使
如图2.
(1)求证:平面
平面
;
(2)求
与平面
所成角的正弦值;
(3)设
、
分别为
和
的中点,试比较三棱锥
和三棱锥
(图中未画出)的体积大小,并说明理由.
![]()
图1 图2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】判断下列存在量词命题的真假:
(1)有些实数是无限不循环小数;
(2)存在一个三角形不是等腰三角形;
(3)有些菱形是正方形;
(4)至少有一个整数
是4的倍数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
点P是曲线C1:(x-2)2+y2=4上的动点,以坐标原点O为极点,x轴的正半轴为极轴
建立极坐标系,将点P绕极点O逆时针90得到点Q,设点Q的轨迹为曲线C2.
求曲线C1,C2的极坐标方程;
射线=
(>0)与曲线C1,C2分别交于A,B两点,定点M(2,0),求MAB的面积
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com