精英家教网 > 高中数学 > 题目详情

【题目】选修4—4:坐标系与参数方程

P是曲线C1:(x-2)2+y2=4上的动点,以坐标原点O为极点,x轴的正半轴为极轴

建立极坐标系,将点P绕极点O逆时针90得到点Q,设点Q的轨迹为曲线C2.

求曲线C1,C2的极坐标方程;

射线= (>0)与曲线C1,C2分别交于A,B两点,定点M(2,0),MAB的面积

【答案】(Ⅰ) 的极坐标方程为 的极坐标方程为;(Ⅱ)

【解析】试题分析:(I)曲线 把互化公式代入可得曲线 的极坐标方程,设代入即可得出曲线 的极坐标方程;(II) 到射线 的距离为

即可得出面积.

试题解析:(Ⅰ)曲线的极坐标方程为

,则,则有

所以曲线的极坐标方程为

(Ⅱ)到射线的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校为加强学生的交通安全教育,对学校旁边两个路口进行了8天的检测调查,得到每天各路口不按交通规则过马路的学生人数(如茎叶图所示),且路口数据的平均数比路口数据的平均数小2.

(1)求出路口8个数据中的中位数和茎叶图中的值;

(2)在路口的数据中任取大于35的2个数据,求所抽取的两个数据中至少有一个不小于40的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是(
A.已知实数a,b,则“a>b”是“a2>b2”的必要不充分条件
B.“存在x0∈R,使得 ”的否定是“对任意x∈R,均有x2﹣1>0”
C.函数 的零点在区间
D.设m,n是两条直线,α,β是空间中两个平面,若m?α,n?β,m⊥n,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是矩形,平面 平面,且是边长为的等边三角形, ,点的中点.

(1)求证: 平面

(2)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上, ,若 =1, =﹣ ,则λ+μ=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x-3)ex+ax,aR

(1)当a=1时,求曲线f(x)在点(2,f(2))处的切线方程;

(2)当a[0,e)时,设函数f(x)在(1,+)上的最小值为g(a),求函数g(a)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= cos2x+sin2(x+ ). (Ⅰ)求f(x)的最小正周期和单调递增区间;
(Ⅱ)当x∈[﹣ )时,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥S﹣ABCD中,底面ABCD是菱形,∠BAD=60°,侧面SAB⊥底面ABCD,并且SA=SB=AB=2,F为SD的中点.
(1)求三棱锥S﹣FAC的体积;
(2)求直线BD与平面FAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋子中装有三个编号分别为1,2,3的红球和三个编号分别为1,2,3的白球,三个红球按其编号分别记为a1 , a2 , a3 , 三个白球按其编号分别记为b1 , b2 , b3 , 袋中的6个球除颜色和编号外没有任何差异,现从袋中一次随机地取出两个球,
(1)列举所有的基本事件,并写出其个数;
(2)规定取出的红球按其编号记分,取出的白球按其编号的2倍记分,取出的两个球的记分之和为一次取球的得分,求一次取球的得分不小于6的概率.

查看答案和解析>>

同步练习册答案