精英家教网 > 高中数学 > 题目详情

【题目】已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上, ,若 =1, =﹣ ,则λ+μ=(
A.
B.
C.
D.

【答案】C
【解析】解:由题意可得若 =( + )( + )= + + + =2×2×cos120°+ μ =﹣2+4μ+4λ+λμ×2×2×cos120°
=4λ+4μ﹣2λμ﹣2=1,
∴4λ+4μ﹣2λμ=3 ①.
=﹣ (﹣ )= =(1﹣λ) (1﹣μ) =(1﹣λ) (1﹣μ)
=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣
即﹣λ﹣μ+λμ=﹣ ②.
由①②求得λ+μ=
所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲乙两人进行两种游戏,两种游戏规则如下:游戏Ⅰ:口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.游戏Ⅱ:口袋中有质地、大小完全相同的6个球,其中4个白球,2个红球,由裁判有放回的摸两次球,即第一次摸出记下颜色后放回再摸第二次,摸出两球同色算甲赢,摸出两球不同色算乙赢.
(Ⅰ)求游戏Ⅰ中甲赢的概率;
(Ⅱ)求游戏Ⅱ中乙赢的概率;并比较这两种游戏哪种游戏更公平?试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角 的对边分别为 .已知

(1)求角的大小;

2)若 的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,隔河看两目标A、B,但不能到达,在岸边选取相距 km的C、D两点,并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A、B、C、D在同一平面内),求两目标A、B之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为了满足市民出行的需要和节能环保的要求,在公共场所提供单车共享服务,某部门为了对该城市共享单车进行监管,随机选取了位市民对共享单车的情况逬行问卷调査,并根根据其满意度评分值(滿分分)制作的茎叶图如图所示:

(1)分别计算男性打分的平均数和女性打分的中位数;

(2)从打分在分以下(不含分)的市民抽取人,求有女性被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

P是曲线C1:(x-2)2+y2=4上的动点,以坐标原点O为极点,x轴的正半轴为极轴

建立极坐标系,将点P绕极点O逆时针90得到点Q,设点Q的轨迹为曲线C2.

求曲线C1,C2的极坐标方程;

射线= (>0)与曲线C1,C2分别交于A,B两点,定点M(2,0),MAB的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sinx的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移 个单位,得到的图象对应的解析式是(
A.y=sin(2x+
B.y=sin( x+
C.y=sin( x+
D.y=sin(2x+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为圆的直径,点 在圆上, ,矩形和圆所在的平面互相垂直,已知

(Ⅰ)求证:平面平面

(Ⅱ)求直线与平面所成角的大小;

(Ⅲ)当的长为何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以为顶点的六面体中, 均为等边三角形,且平面平面 平面 .

(1)求证: 平面

(2)求此六面体的体积.

查看答案和解析>>

同步练习册答案