【题目】将函数y=sinx的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移 个单位,得到的图象对应的解析式是( )
A.y=sin(2x+ )
B.y=sin( x+ )
C.y=sin( x+ )
D.y=sin(2x+ )
科目:高中数学 来源: 题型:
【题目】下列关于公差d>0的等差数列{an}的四个命题:
p1:数列{an}是递增数列;
p2:数列{nan}是递增数列;
p3:数列 是递增数列;
p4:数列{an+3nd}是递增数列;
其中真命题是( )
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=3x2+bx+c,不等式f(x)>0的解集为(﹣∞,﹣2)∪(0,+∞).
(1)求函数f(x)的解析式;
(2)已知函数g(x)=f(x)+mx﹣2在(2,+∞)上单调递增,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上, =λ , =μ ,若 =1, =﹣ ,则λ+μ=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,D是直角△ABC斜边BC上一点,AC= DC.
(Ⅰ)若∠DAC=30°,求角B的大小;
(Ⅱ)若BD=2DC,且AD= ,求DC的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= cos2x+sin2(x+ ). (Ⅰ)求f(x)的最小正周期和单调递增区间;
(Ⅱ)当x∈[﹣ , )时,求f(x)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,函数f(x)=sin(ωx+φ)(ω>0,|φ|< )离y轴最近的零点与最大值均在抛物线y=﹣ x2+ x+1上,则f(x)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C1: 的离心率为 ,焦距为 ,抛物线C2:x2=2py(p>0)的焦点F是椭圆C1的顶点. (Ⅰ)求C1与C2的标准方程;
(Ⅱ)C1上不同于F的两点P,Q满足 ,且直线PQ与C2相切,求△FPQ的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.
(1)证明:面PAD⊥面PCD;
(2)求直线AC与PB所成角的余弦值;
(3)求二面角A﹣MC﹣B的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com