精英家教网 > 高中数学 > 题目详情

【题目】如图所示,函数f(x)=sin(ωx+φ)(ω>0,|φ|< )离y轴最近的零点与最大值均在抛物线y=﹣ x2+ x+1上,则f(x)=( )

A.
B.

C.
D.

【答案】C
【解析】解:根据题意,函数f(x)离y轴最近的零点与最大值均在抛物线 上,
令y=0,得﹣ x2+ x+1=0,
解得x=﹣ 或x=1;
∴点(﹣ ,0)在函数f(x)的图像上,
∴﹣ ω+φ=0,即φ= ω①;
又令ωx+φ= ,得ωx= ﹣φ②;
把①代入②得,x= ③;
令y=1,得﹣ x2+ x+1=1,
解得x=0或x=
=
解得ω= π,
∴φ= ω=
∴f(x)=sin( x+ ).
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知方程x2+y2﹣2x﹣4y+m=0.
(1)若此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y﹣4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为了满足市民出行的需要和节能环保的要求,在公共场所提供单车共享服务,某部门为了对该城市共享单车进行监管,随机选取了位市民对共享单车的情况逬行问卷调査,并根根据其满意度评分值(滿分分)制作的茎叶图如图所示:

(1)分别计算男性打分的平均数和女性打分的中位数;

(2)从打分在分以下(不含分)的市民抽取人,求有女性被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sinx的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移 个单位,得到的图象对应的解析式是(
A.y=sin(2x+
B.y=sin( x+
C.y=sin( x+
D.y=sin(2x+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和是等差数列,且.

)求数列的通项公式;

)令.求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为圆的直径,点 在圆上, ,矩形和圆所在的平面互相垂直,已知

(Ⅰ)求证:平面平面

(Ⅱ)求直线与平面所成角的大小;

(Ⅲ)当的长为何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项不为零的数列的前项和为,且

1)若成等比数列,求实数的值;

2)若成等差数列,

①求数列的通项公式;

②在间插入个正数,共同组成公比为的等比数列,若不等式对任意的恒成立,求实数的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(sinx+cosx)2+2cos2x﹣2.
(1)求函数f(x)的最小正周期及单调递增区间;
(2)当x∈[ ]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣
(1)判断函数f(x)的奇偶性,并加以证明;
(2)用定义证明函数f(x)在区间[1,+∞)上为增函数;
(3)若函数f(x)在区间[2,a]上的最大值与最小值之和不小于 ,求a的取值范围.

查看答案和解析>>

同步练习册答案