精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x﹣
(1)判断函数f(x)的奇偶性,并加以证明;
(2)用定义证明函数f(x)在区间[1,+∞)上为增函数;
(3)若函数f(x)在区间[2,a]上的最大值与最小值之和不小于 ,求a的取值范围.

【答案】
(1)解:函数 是奇函数.

∵定义域:(﹣∞,0)∪(0,+∞),定义域关于原点对称,

∴函数 是奇函数


(2)证明:设任意实数x1,x2∈[1,+∞),且x1<x2

﹣( )═

= =

∵x1<x2,x1,x2∈[1,+∞)

∴x1﹣x2<0,x1x2>0,x1x2+1>0,

<0

∴f(x1)﹣f(x2)<0,即f(x1)<f(x2

∴函数f(x)在区间[1,+∞)上为增函数


(3)解:∵[2,a][1,+∞)

∴函数f(x)在区间[2,a]上也为增函数.

若函数f(x)在区间[2,a]上的最大值与最小值之和不小于

解得a≥4,

∴a的取值范围是[4,+∞)


【解析】(1)判断出函数是奇函数再证明,确定函数定义域且关于原点对称,利用奇函数的定义可判断;(2)判断函数f(x)在(0,+∞)上是增函数,证明按照取值、作差、变形定号、下结论步骤即可;(3)根据(2)的结论得函数在区间[2,a]上的单调性,再求出最大值、最小值,根据条件列出不等式求出a得范围.
【考点精析】关于本题考查的函数奇偶性的性质和利用导数研究函数的单调性,需要了解在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇;一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,函数f(x)=sin(ωx+φ)(ω>0,|φ|< )离y轴最近的零点与最大值均在抛物线y=﹣ x2+ x+1上,则f(x)=( )

A.
B.

C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《孙子算经》是中国古代重要的数学著作,约成书于四、五世纪,也就是大约一千五百年前,传本的《孙子算经》共三卷,卷中有一问题:“今有方物一束,外周一匝有三十二枚,问积几何?”该著作中提出了一种解决问题的方法:“重置二位,左位减八,余加右位,至尽虚加一,即得.”通过对该题的研究发现,若一束方物外周一匝的枚数是8的整数倍时,均可采用此方法求解,如图,是解决这类问题的程序框图,若输入,则输出的结果为( )

A. 120 B. 121 C. 112 D. 113

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.
(1)证明:面PAD⊥面PCD;
(2)求直线AC与PB所成角的余弦值;
(3)求二面角A﹣MC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对任意实数x,y满足f(x)+f(y)=f(x+y)+3,f(3)=6,当x>0 时,f(x)>3,那么,当f(2a+1)<5时,实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 ,则使得f(2x)>f(x﹣3)成立的x的取值范围是(
A.(﹣∞,﹣3)
B.(1,+∞)
C.(﹣3,﹣1)
D.(﹣∞,﹣3)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据题意解答
(1)求定积分 |x2﹣2|dx的值;
(2)若复数z1=a+2i(a∈R),z2=3﹣4i,且 为纯虚数,求|z1|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,曲线上任意一点满足;曲线上的点轴的右边且的距离与它到轴的距离的差为1.

(1)求的方程;

(2)过的直线相交于点,直线分别与相交于点.求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数

1)求不等式的解集

2)若,求证: .

查看答案和解析>>

同步练习册答案