精英家教网 > 高中数学 > 题目详情

【题目】已知,曲线上任意一点满足;曲线上的点轴的右边且的距离与它到轴的距离的差为1.

(1)求的方程;

(2)过的直线相交于点,直线分别与相交于点.求的取值范围.

【答案】(1)的方程为 的方程为.(2)

【解析】试题分析:(1)由已知,根据双曲线的定义可得,从而可得的方程,用直接法可求得的方程;(2)直线的方程为,直线与曲线联立,根据韦达定理,焦半径公式将 表示,进而可得结果.

试题解析:(1)由题意可知点的轨迹是以为焦点, 为实轴长的双曲线的左支,故有

的方程为

,则有,化简得

的方程为

(2)设直线的方程为

联立方程组,消去

,则有

的斜率分别为,则有

直线的方程为,代入

,则有

同理

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(sinx+cosx)2+2cos2x﹣2.
(1)求函数f(x)的最小正周期及单调递增区间;
(2)当x∈[ ]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣
(1)判断函数f(x)的奇偶性,并加以证明;
(2)用定义证明函数f(x)在区间[1,+∞)上为增函数;
(3)若函数f(x)在区间[2,a]上的最大值与最小值之和不小于 ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD底面ABCD,

(1)求证:平面PAB平面PCD;

(2)若过点B的直线垂直平面PCD,求证: //平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学在开学季准备销售一种盒饭进行试创业,在一个开学季内,每售出1盒该盒饭获利润10元,未售出的产品,每盒亏损5元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了150盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.

(Ⅰ)根据直方图估计这个开学季内市场需求量的平均数和众数;

(Ⅱ)将表示为的函数;

(Ⅲ)根据频率分布直方图估计利润不少于1350元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知随机变量X服从正态分布N(μ,σ2),且P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣σ<X≤μ+σ)=0.6826,若μ=4,σ=1,则P(5<X<6)=( )
A.0.1358
B.0.1359
C.0.2716
D.0.2718

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列对于确定的正整数,若存在正整数使得成立,则称数列为“阶可分拆数列”.

(1)设 是首项为2,公差为2的等差数列,证明为“3阶可分拆数列”;

(2)设数列的前项和为,若数列为“阶可分拆数列”,求实数的值;

(3)设,试探求是否存在使得若数列为“阶可分拆数列”.若存在,请求出所有,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣4|x|+3,x∈R.
(1)判断函数的奇偶性并将函数写成分段函数的形式;
(2)画出函数的图象,根据图象写出它的单调区间;

(3)若函数f(x)的图象与y=a的图象有四个不同交点,则实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)如果对于任意的 恒成立,求实数的取值范围;

(3)设函数 ,过点作函数的图象的所有切线,令各切点的横坐标按从小到大构成数列,求数列的所有项之和的值.

查看答案和解析>>

同步练习册答案