精英家教网 > 高中数学 > 题目详情
如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点,

(1)求证:AM∥平面BDE;

(2)求二面角A-DF-B的大小;

(3)试在线段AC上确定一点P,使得PF与BC所成的角是60°.

                     

(1)证明:记AC与BD的交点为O,连结OE,

∵O,M分别是AC,EF的中点,ACEF是矩形,

∴四边形AOEM是平行四边形.

∴AM∥OE.

∵OE平面BDE,AM平面BDE,

∴AM∥平面BDE.

(2)解:在平面AFD中,过A点作AS⊥DF于点S,连结BS,

∵AB⊥AF,AB⊥AD,AD∩AF=A,

∴AB⊥平面ADF.

∴AS是BS在平面ADF上的射影.

由三垂线定理得BS⊥DF,

∴∠BSA是二面角ADFB的平面角.

在Rt△ASB中,AS=,AB=,

∴tan∠ASB=,∠ASB=60°.

∴二面角ADFB的大小为60°.

(3)解:设CP=t(0≤t≤2),作PQ⊥AB于Q,则PQ∥BC,

∵PQ⊥AB,PQ⊥AF,AB∩AF=A,

∴PQ⊥平面ABF,QF平面ABF.

∴PQ⊥QF.

在Rt△PQF中,∠FPQ=60°,PF=2PQ,

∵△PAQ为等腰直角三角形,

∴PQ=(2-t).

又∵△PAF为直角三角形,

∴PF=.

=2×(2-t).

∴t=1或t=3(舍去),

即点P是AC的中点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1,M是线段EF的中点.
(Ⅰ)求证AM∥平面BDE;
(Ⅱ)求二面角A-DF-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD的边长为1,过正方形中心O的直线MN分别交正方形的边AB,CD于M,N,则当
MN
BN
最小时,CN=
5
-1
2
5
-1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD和梯形ACEF所在平面互相垂直,AB=2,AF=
2
,CE=2
2
,CE∥AF,AC⊥CE,
ME
=2
FM

(I)求证:CM∥平面BDF;
(II)求异面直线CM与FD所成角的余弦值的大小;
(III)求二面角A-DF-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1

(1)求二面角A-DF-B的大小;
(2)在线段AC上找一点P,使PF与AD所成的角为60°,试确定点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳二模)如图,已知正方形ABCD在水平面上的正投影(投影线垂直于投影面)是四边形A′B′C′D′,其中A与A'重合,且BB′<DD′<CC′.
(1)证明AD′∥平面BB′C′C,并指出四边形AB′C′D′的形状;
(2)如果四边形中AB′C′D′中,AD′=
2
,AB′=
5
,正方形的边长为
6
,求平面ABCD与平面AB′C′D′所成的锐二面角θ的余弦值.

查看答案和解析>>

同步练习册答案