【题目】已知在平面直角坐标系
中,中心在原点,焦点在y轴上的椭圆C与椭圆
的离心率相同,且椭圆C短轴的顶点与椭圆E长轴的顶点重合.
(1)求椭圆C的方程;
(2)若直线l与椭圆E有且仅有一个公共点,且与椭圆C交于不同两点A,B,求
的最大值.
【答案】(1)
;(2)![]()
【解析】
(1)先求出椭圆
的长轴及离心率,进而可得到椭圆C的短轴和离心率,进而可求得椭圆C的标准方程;
(2)若直线
的斜率不存在,易知直线
与椭圆
相切,不符合题,从而可知直线
的斜率存在,设出直线
的方程
,与椭圆
联立,得到关于
的一元二次方程,结合
,可得
,然后将直线
的方程与椭圆
的方程联立,得到关于
的一元二次方程,进而求得弦长
的表达式,结合
,可求得弦长的最大值.
(1)由题意,椭圆
的长轴长为4,离心率为
,
设椭圆
的方程为
,则椭圆
的短轴长为
,即
,离心率为
,解得
,故椭圆
的方程为
.
(2)若直线
的斜率不存在,则直线
方程为
,此时直线
与椭圆
相切,不满足题意,故直线
的斜率存在,设其方程为
,
联立
,消去
得,
,
则
,整理得
,
联立
,消去
得,
,
则
,整理得
,显然成立,
且
,
,
则![]()
![]()
![]()
,
整理得
,
又因为
,所以
,
设
,则
,
,
因为
,当且仅当
时,等号成立,所以
,此时
,即
时,
取得最大值
.
科目:高中数学 来源: 题型:
【题目】设椭圆
,过点
的直线
,
分别交
于不同的两点
、
,直线
恒过点![]()
(1)证明:直线
,
的斜率之和为定值;
(2)直线
,
分别与
轴相交于
,
两点,在
轴上是否存在定点
,使得
为定值?若存在,求出点
的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
离心率为
,四个顶点构成的四边形的面积是4.
(1)求椭圆C的标准方程;
(2)若直线
与椭圆C交于P,Q均在第一象限,直线OP,OQ的斜率分别为
,
,且
(其中O为坐标原点).证明:直线l的斜率k为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆P与圆
:
内切,且与直线
相切,设动圆圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过曲线
上一点
(
)作两条直线
,
与曲线
分别交于不同的两点
,
,若直线
,
的斜率分别为
,
,且
.证明:直线
过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某书店今年5月上架10种新书,且它们的首月销量(单位:册)情况为:100,50,100,150,150,100,150,50,100,100,频率为概率,解答以下问题:
(1)若该书店打算6月上架某种新书,估计它首月销量至少为100册的概率;
(2)若某种最新出版的图书订购价为10元/册,该书店计划首月内按12元/册出售,第二个月起按8元/册降价出售,降价后全部存货可以售出.试确定,该书店订购该图书50册,100册,还是150册有利于获得更多利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
过椭圆
的右焦点
,抛物线
的焦点为椭圆
的上顶点,且
交椭圆
于
两点,点
在直线
上的射影依次为
.
(1)求椭圆
的方程;
(2)若直线
交
轴于点
,且
,当
变化时,证明:
为定值;
(3)当
变化时,直线
与
是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的左、右焦点坐标分别是
,
,离心率是
,直线
与椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标;
(Ⅲ)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com