精英家教网 > 高中数学 > 题目详情
(1)已知a,b,c均为实数,求证:a2+b2+c2
1
3
(a+b+c)2

(2)若a,b,c均为实数,且a=x2-2y+
1
3
,b=y2-2z+3,c=z2-2x+
1
6
.求证:a,b,c中至少有一个大于0.
分析:(1)利用分析法,要证a2+b2+c2
1
3
(a+b+c)2
,需证…,只需证…,即证(a-b)2+(a-c)2+(b-c)2≥0,该式成立,从而可证原结论成立;
(2)利用反证法,假设a,b,c中没有一个大于0(即均≤0),导出矛盾,从而使要证的结论成立.
解答:解:(1)要证a2+b2+c2
1
3
(a+b+c)2

需证3(a2+b2+c2)≥(a+b+c)2
即证2(a2+b2+c2)≥2ab+2ac+2bc,
即证(a-b)2+(a-c)2+(b-c)2≥0,该式显然成立,
故原结论成立;
(2)假设
a≤0
b≤0
c≤0
,即
x2-2y+
1
3
≤0①
y2-2z+3≤0②
z2-2x+
1
6
≤0③

①+②+③得:x2+y2+z2-2x-2y-2z+3+
1
3
+
1
6
=(x-1)2+(y-1)2+(z-1)2+
1
2
≤0,
∵(x-1)2≥0,(y-1)2≥0,(z-1)2≥0,
∴(x-1)2+(y-1)2+(z-1)2+
1
2
1
2

∴(x-1)2+(y-1)2+(z-1)2+
1
2
≤0是不可能的,即x2+y2+z2-2x-2y-2z+3+
1
3
+
1
6
≤0是不可能的,
∴假设不成立,
∴a,b,c中至少有一个大于0.
点评:本题考查不等式的证明,着重考查分析法与反证法的应用,考查推理证明能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知a,b,c为实数,证明a,b,c均为正数的充要条件是
a+b+c>0
ab+bc+ca>0
abc>0

(2)已知方程x3+px2+qx+r=0的三根α,β,γ都是实数,证明α,β,γ是一个三角形的三边的充要条件是
p<0,q>0,r<0
p3>4pq-8r

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知a>b>c,且a+b+c=0,求证:
b2-ac
a
3

(2)若不等式
1
n+1
+
1
n+2
+…+
1
3n+1
a
24
对一切正整数n都成立,求正整数a的最大值,并用数学归纳法证明此时的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知a,b,c∈R,且a+b+c=1,求证:a2+b2+c2
1
3

(2)a,b,c为互不相等的正数,且abc=1,求证:
1
a
+
1
b
+
1
c
a
+
b
+
c

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca;
(2)设a,b,c∈(0,+∞),且a+b+c=1,求证(
1
a
-1)(
1
b
-1)(
1
c
-1)≥8

查看答案和解析>>

同步练习册答案