精英家教网 > 高中数学 > 题目详情
设函数y=f(x)是定义在(0,+∞)上的函数,并满足f(xy)=f(x)+f(y),f(2)=1,若0<x<1时f(x)<0.
(1)求f(1)的值;
(2)求证:f(x)在(0,+∞)上是增函数
(3)解不等式f(x)-f(x-1)≥2.
分析:(1)令x=y=1,根据定义在(0,+∞)上的函数f(x)恒有f(xy)=f(x)+f(y),我们易构造关于f(1)的方程,解方程即可求出求f(1);   
(2)根据已知中定义在(0,+∞)上的函数f(x)恒有f(xy)=f(x)+f(y),并且0<x<1时,f(x)<0恒成立,结合函数单调性的证明方法--作差法(定义法)我们即可得到f(x)在(0,+∞)上单调递增;
(3)结合(1)、(2)的结论,我们可将不等式f(k•3x)-f(9x-3x+1)≥f(1)转化为一个指数不等式,进而利用换元法可将问题转化为一个二次不等式恒成立问题,解答后即可得到满足条件的实数k的取值范围.
解答:解:(1)∵f(xy)=f(x)+f(y),
令x=y=1,
则F(1)=2f(1)
∴f(1)=0;           (5分)
证明:(2)由f(xy)=f(x)+f(y)
可得f(
y
x
)=f(y)-f(x),
设x1>x2>0,f(x2)-f(x1)=f(
x2
x1
x1)-f(x1)

=f(
x2
x1
)+f(x1)-f(x1)

=f(
x2
x1
)

又x1>x2>0,
0<
x2
x1
<1
f(
x2
x1
)<0

即f(x2)<f(x1).
所以f(x)在(0,+∞)上是增函数;(10分)
(3)∵f(2)=1,
∴f(2×2)=f(2)+f(2)=2
由f(x)-f(x-1)≥f(4)
从而得到
x>0
4x-4>0
x≥4x-4

解得x∈(1,
4
3
]
点评:本题考查的知识点是抽象函数及其应用,函数单调性的性质,其中(1)的关键是“凑配”思想的应用,(2)的关键是将f(xy)=f(x)+f(y),变型为f(x2)-f(x1)=f(
x2
x1
x1)-f(x1)
;(3)的关键是由f(x)-f(x-1)≥f(4)得到
x>0
4x-4>0
x≥4x-4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f (x)是定义域为R的奇函数,且满足f (x-2)=-f (x)对一切x∈R恒成立,当-1≤x≤1时,f (x)=x3,则下列四个命题:
①f(x)是以4为周期的周期函数.
②f(x)在[1,3]上的解析式为f (x)=(2-x)3
③f(x)在(
3
2
,f(
3
2
))
处的切线方程为3x+4y-5=0.
④f(x)的图象的对称轴中,有x=±1,其中正确的命题是(  )
A、①②③B、②③④
C、①③④D、①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)是定义在(0,+∞)上的函数,并且满足下面三个条件:
①对正数x、y都有f(xy)=f(x)+f(y);
②当x>1时,f(x)<0;
③f(3)=-1
(I)求f(1)和f(
19
)
的值;
(II)如果不等式f(x)+f(2-x)<2成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)是定义在R上以1为周期的函数,若g(x)=f(x)-2x在区间[2,3]上的值域为[-2,6],则函数g(x)在[-12,12]上的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)是定义在正实数上的增函数,且f(xy)=f(x)+f(y),
(1)求证:f(
xy
)=f(x)-f(y);
(2)若f(3)=1,f(a)>f(a-1)+2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)是定义在R上的奇函数,且f(x-2)=-f(x)对一切x∈R都成立,又当x∈[-1,1]时,f(x)=x3,则下列五个命题:
①函数y=f(x)是以4为周期的周期函数;
②当x∈[1,3]时,f(x)=( x-2)3
③直线x=±1是函数y=f(x)图象的对称轴;
④点(2,0)是函数y=f(x)图象的对称中心;
⑤函数y=f(x)在点(
3
2
,f(
3
2
))处的切线方程为3x-y-5=0.
其中正确的是
①③
①③
.(写出所有正确命题的序号)

查看答案和解析>>

同步练习册答案