精英家教网 > 高中数学 > 题目详情

【题目】已知点是单位正方体的对角面上的一动点,过点作垂直于平面的直线,与正方体的侧面相交于两点,则的面积的最大值为( )

A. B. C. D.

【答案】A

【解析】

根据题意和正方体的特征,分析点P动的过程中,x随着y变化情况作出轨迹图象,数形结合能求出结果.

解:由题意知,MN⊥平面BB1D1D,其轨迹经过BD1和侧棱AA1CC1的中点EF

如图,设正方体中心为O1,P点在线段BO1上运动时,MNBP的增大而线性增大,所以△BMN的面积表达式应是开口向上的二次函数图像递增的一部分; P点在线段D1O1上运动时, MND1P的增大而线性减小,所以△BMN的面积表达式应是开口向下的二次函数图像递减的一部分.所以当MNEF重合时,△BMN的面积取最大值,

此时,BMBN

MN

SBMN

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法:①若线性回归方程为,则当变量增加一个单位时,一定增加3个单位;②将一组数据中的每个数据都加上同一个常数后,方差不会改变;③线性回归直线方程必过点;④抽签法属于简单随机抽样;其中错误的说法是(

A.①③B.②③④C.D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,四边形是菱形,,且交于点上任意一点.

1)求证

2)已知二面角的余弦值为,若的中点,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线过点是抛物线上不同两点,且(其中是坐标原点),直线交于点,线段的中点为.

(Ⅰ)求抛物线的准线方程;

(Ⅱ)求证:直线轴平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上,分别为椭圆的上、下顶点,点.

(1)求椭圆的方程;

(2)若直线与椭圆的另一交点分别为,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有四个小球,分别写有美、丽、华、一四个字,有放回地从中任取一个小球,直到”“两个字都取到就停止,用随机模拟的方法估计恰好在第四次停止的概率.利用计算机随机产生03之间取整数值的随机数,分别用0123代表美、丽、华、一这四个字,以每四个随机数为一组,表示取球四次的结果,经随机模拟产生了以下20组随机数:

2323 3211 2303 1233 0211 1322 2201 2213 0012 1231

2312 1300 2331 0312 1223 1031 3020 3223 3301 3212

由此可以估计,恰好第四次就停止的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),曲线的参数方程为为参数),以该直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)分别求曲线的极坐标方程和曲线的直角坐标方程;

(Ⅱ)设直线交曲线两点,交曲线两点,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次公里的自行车个人赛中,25名参赛选手的成绩(单位:分钟)的茎叶图如图所示:

(1)现将参赛选手按成绩由好到差编为1~25号,再用系统抽样方法从中选取5人,已知选手甲的成绩为85分钟,若甲被选取,求被选取的其余4名选手的成绩的平均数;

(2)若从总体中选取一个样本,使得该样本的平均水平与总体相同,且样本的方差不大于7,则称选取的样本具有集中代表性,试从总体(25名参赛选手的成绩)选取一个具有集中代表性且样本容量为5的样本,并求该样本的方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,底面四边形是边长为4的菱形,平面,且.

(1)证明:平面平面

(2)求三棱锥的体积.

查看答案和解析>>

同步练习册答案