精英家教网 > 高中数学 > 题目详情

【题目】批次的种灯泡个,对其寿命进行追踪调查,将结果列频率分布表如下,根据寿命将灯泡分成优等品、正品和次品三级,其中寿大于或等于的灯泡优等品,寿小于的灯泡次品,余的灯泡是正.

寿 (天)

频数

频率

合计

(1)根据频率分布表中的数据,写出的值;

(2)某人从这个灯泡中随机地购买了个,求此灯泡恰好不是次品的概率;

(3)某人从这批灯泡中随机地购买了个,如果这个灯泡的等级情況恰好与按三个等级分层抽样所得的结果相同,求的最小值.

【答案】(1);(2);(3)10.

【解析】试题分析: (1) 由频率分布表中的数据,求出的值;(2)根据频率分布表中的数据,求出此人购买的灯泡怡好不是次品的概率;(3)由这批灯泡中优等品、正品和次品的比例数,再按分层抽样方法,求出购买灯泡数的最小值.

试题解析:(1).

(2)设“此人购买的灯泡恰好不是次品”为事件,由表可知:这批灯泡中优等品有60个,正品有100个,次品有40个,所以此人购买的灯泡恰好不是次品的概率为.

(3)由表,得这批灯泡中优等品、正品和次品的比例为,所以按分层抽样法,购买的灯泡数,所以的最小值为10.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=cos(ωx+φ)(ω>0,﹣ <φ<0)的最小正周期为π,且f( )=

(1)求ω和φ的值;
(2)在给定坐标系中作出函数f(x)在[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥曲线 是参数)和定点 , F1 , F2 是圆锥曲线的左、右焦点.
(1)求经过点 F2 且垂直于直线 AF1 的直线 l 的参数方程;
(2)设 P 为曲线 C 上的动点,求 P 到直线 l 距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形和等边三角形中, ,平面平面

(1)在上找一点,使,并说明理由;

(2)在(1)的条件下,求平面与平面所成锐二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察研究某种植物的生长速度与温度的关系,经过统计,得到生长速度(单位:毫米/月)与月平均气温的对比表如下:

温度

-5

0

6

8

12

15

20

生长速度

2

4

5

6

7

8

10

(1)求生长速度关于温度的线性回归方程;(斜率和截距均保留为三位有效数字);

(2)利用(1)中的线性回归方程,分析气温从时生长速度的变化情况,如果某月的平均气温是时,预测这月大约能生长多少.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体ABCD﹣A1B1C1D1中,E、F分别为棱AA1、BB1的中点,G为棱A1B1上的一点,且A1G=λ(0≤λ≤1),则点G到平面D1EF的距离为(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC上的点,AD=AE,F是BC的中点,AF与DE交于点G,△ABF沿AF折起,得到如图2所示的三棱锥A﹣BCF,其中BC=

(1)求证:平面DEG∥平面BCF;
(2)若D,E为AB,AC上的中点,H为BC中点,求异面直线AB与FH所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PPD//平面MACPA=PD=,AB=4.

(I)求证:MPB的中点;

(II)求二面角B-PD-A的大小;

(III)求直线MC与平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3+ax2﹣bx(a,b∈R),若y=f(x)图象上的点(1,﹣ )处的切线斜率为﹣4,
(1)求f(x)的表达式.
(2)求y=f(x)在区间[﹣3,6]上的最值.

查看答案和解析>>

同步练习册答案