精英家教网 > 高中数学 > 题目详情
(2012•湖南)在直角坐标系xoy中,曲线C1上的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值.
(Ⅰ)求曲线C1的方程
(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别于曲线C1相交于点A,B和C,D.证明:当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值.
分析:(Ⅰ)设M的坐标为(x,y),根据对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值,可得|x+2|=
(x-5)2+y2
-3
且圆C2上的点位于直线x=-2的右侧,从而可得曲线C1的方程;
(Ⅱ)当点P在直线x=-4上运动时,P的坐标为(-4,y0),设切线方程为kx-y+y0+4k=0,利用直线与圆相切可得72k2+18y0k+y02-9=0,从而可得过P所作的两条切线PA,PC的斜率k1,k2是方程的两个实根,设四点A,B,C,D的纵坐标分别为y1,y2,y3,y4,从而可得y1y2=
20(y0+4k1)
k1
;同理可得y3y4=
20(y0+4k2)
k2
,由此可得当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值为6400.
解答:(Ⅰ)解:设M的坐标为(x,y),由已知得|x+2|=
(x-5)2+y2
-3
且圆C2上的点位于直线x=-2的右侧
(x-5)2+y2
=x+5
化简得曲线C1的方程为y2=20x
(Ⅱ)证明:当点P在直线x=-4上运动时,P的坐标为(-4,y0),
∵y0≠±3,∴过P且与圆C2相切的直线的斜率k存在且不为0,每条切线都与抛物线有两个交点,切线方程为
y-y0=k(x+4),即kx-y+y0+4k=0,
|5k+y0+4k|
k2+1
=3
,整理得72k2+18y0k+y02-9=0
设过P所作的两条切线PA,PC的斜率分别为k1,k2,则k1,k2是方程①的两个实根
k1+k2=-
y0
4

k1x-y+y0+4k1=0
y2=20x
,消元可得k1y2-20y+20(y0+4k1)=0
设四点A,B,C,D的纵坐标分别为y1,y2,y3,y4
∴y1,y2是方程③的两个实根
y1y2=
20(y0+4k1)
k1

同理可得y3y4=
20(y0+4k2)
k2

由②④⑤可得y1y2y3y4=
20(y0+4k1)
k1
×
20(y0+4k2)
k2
=
400(y02-y02+16k1k2)
k1k2
=6400
∴当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值为6400.
点评:本题考查轨迹方程,考查直线与圆相切,考查韦达定理的运用,解题的关键是切线与抛物线联立,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖南)在△ABC中,AC=
7
,BC=2,B=60°则BC边上的高等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南)在直角坐标系xoy 中,已知曲线C1
x=t+1
y=1-2t
(t为参数)与曲线C2
x=asinθ
y=3cosθ
(θ为参数,a>0 )有一个公共点在X轴上,则a等于
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南)在△ABC中,AB=2,AC=3,
AB
BC
=1,则BC=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南)在极坐标系中,曲线C1:ρ(
2
cosθ+sinθ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上,则a=
2
2
2
2

查看答案和解析>>

同步练习册答案