精英家教网 > 高中数学 > 题目详情
已知f(x)=x|x-a|+2x-3.
(Ⅰ)当a=4,2≤x≤5时,问x分别取何值时,函数f(x)取得最大值和最小值,并求出相应的最大值和最小值;
(Ⅱ)若f(x)在R上恒为增函数,试求a的取值范围.
(Ⅰ)当a=4时,f(x)=x|x-4|+2x-3.
(1)2≤x<4时,f(x)=x(4-x)+2x-3=-(x-3)2+6,
当x=2时,f(x)min=5;当x=3时,f(x)max=6.
(2)当4≤x≤5时,f(x)=x(x-4)+2x-3=(x-1)2-4
当x=4时,f(x)min=5;当x=5时,f(x)max=12.
综上所述,当x=2或4时,f(x)min=5;当x=5时,f(x)max=12.
(Ⅱ)f(x)=
x2+(2-a)x-3,x≥a
-x2+(2+a)x-3,x<a
=
(x-
a-2
2
)
2
-
(a-2)2
4
-3,x≥a
-(x-
a+2
2
)
2
+
(a+2)2
4
-3,x<a

f(x)在R上恒为增函数的充要条件是
a-2
2
≤a
a+2
2
≥a
,解得-2≤a≤2.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若k=
1
3
,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间[
1
2
,a]
上的值域为[
1
a
,1]
,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
f1(x),f1(x)≤f2(x)
f2(x),f1(x)>f2(x)

(1)当a=1时,求f(x)的解析式;
(2)在(1)的条件下,若方程f(x)-m=0有4个不等的实根,求实数m的范围;
(3)当2≤a<9时,设f(x)=f2(x)所对应的自变量取值区间的长度为l(闭区间[m,n]的长度定义为n-m),试求l的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闵行区二模)已知f(x)=x|x-a|+b,x∈R.
(1)当a=1,b=0时,判断f(x)的奇偶性,并说明理由;
(2)当a=1,b=1时,若f(2x)=
54
,求x的值;
(3)若b<0,且对任何x∈[0,1]不等式f(x)<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x|x-a|-2.
(1)若f(1)≤1,求a的取值范围;
(2)若a>0,求f(x)的单调区间;
(3)若当x∈[0,1]时,恒有f(x)<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案