精英家教网 > 高中数学 > 题目详情
,求f-1(x+1).
【答案】分析:先由求出函数f(x),再求出f(x)的反函数f-1(x),最后求出f-1(x+1).
解答:解:由得函数f(x)=
令y=
∴x=
∴x,y互换,得y=
故f-1(x)=,(x≠1),
∴f-1(x+1)=-(x≠0).
点评:本题考查反函数的求法,属于基础题目,要会求一些简单函数的反函数,掌握互为反函数的函数图象间的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义域、值域均为R,f(x)的反函数为f-1(x),且对任意实数x,均有f(x)+f-1(x)<
5
2
x
,定义数列an:a0=8,a1=10,an=f(an-1),n=1,2,….
(1)求证:an+1+an-1
5
2
an(n=1,2,…)

(2)设bn=an+1-2an,n=0,1,2,….求证:bn<(-6)(
1
2
)n
(n∈N*);
(3)是否存在常数A和B,同时满足①当n=0及n=1时,有an=
A•4n+B
2n
成立;②当n=2,3,…时,有an
A•4n+B
2n
成立.如果存在满足上述条件的实数A、B,求出A、B的值;如果不存在,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log2(1-x)
(1)求f(x)及g(x)的解析式,并指出其单调性(无需证明).
(2)求使f(x)<0的x取值范围.
(3)设h-1(x)是h(x)=log2x的反函数,若存在唯一的x使
1-h-1(x)1+h-1(x)
=m-2x
成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数学公式,求f-1(x+1).

查看答案和解析>>

科目:高中数学 来源:海淀区二模 题型:解答题

设函数f(x)的定义域、值域均为R,f(x)的反函数为f-1(x),且对任意实数x,均有f(x)+f-1(x)<
5
2
x
,定义数列an:a0=8,a1=10,an=f(an-1),n=1,2,….
(1)求证:an+1+an-1
5
2
an(n=1,2,…)

(2)设bn=an+1-2an,n=0,1,2,….求证:bn<(-6)(
1
2
)n
(n∈N*);
(3)是否存在常数A和B,同时满足①当n=0及n=1时,有an=
A•4n+B
2n
成立;②当n=2,3,…时,有an
A•4n+B
2n
成立.如果存在满足上述条件的实数A、B,求出A、B的值;如果不存在,证明你的结论.

查看答案和解析>>

同步练习册答案