精英家教网 > 高中数学 > 题目详情
3.已知直线l过点A(3,0),B(0,4),则直线l的方程为4x+3y-12=0.

分析 由直线l过点A(3,0),B(0,4),利用直线的两点式方程能够求出直线l的方程.

解答 解:∵直线l过点A(3,0),B(0,4),
∴直线l的方程是:$\frac{y-0}{4-0}$=$\frac{x-3}{0-3}$,
整理,得4x+3y-12=0.
故答案为:4x+3y-12=0.

点评 本题考查直线的两点式方程的合理运用,是基础题.解题时要认真审题,仔细解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下列说法正确的个数为(  )
①统计中用相关系数r来衡量两个变量之间的线性关系的强弱.线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱.
②回归直线$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$一定通过样本点的中心$(\overline x,\overline y)$.
③为了了解某地区参加数学竞赛的1003名学生的成绩情况,准备从中抽取一个容量为50的样本,现采用系统抽样的方法,需要从总体中剔除3个个体,在整体抽样过程中,每个个体被剔除的概率和每个个体被抽到的概率分别是$\frac{3}{1003}$和$\frac{50}{1000}$.
④将一组数据中每个数都加上或者减去同一个常数后,方差恒不变.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.双曲线$\frac{x^2}{3}-\frac{y^2}{6}=1$的离心率e=(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.3D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.边长为2的两个等边△ABD,△CBD所在的平面互相垂直,则四面体ABCD的体积是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一动圆与两圆:x2+y2=1和x2+y2-6x+5=0都外切,则动圆圆心的轨迹为(  )
A.抛物线B.双曲线C.双曲线的一支D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在正方体..中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正(主)视图与侧(左)视图的面积的比值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知下列命题(其中a,b为直线,α为平面):
①若一条直线垂直于平面内无数条直线,则这条直线与这个平面垂直;
②若一条直线平行于一个平面,则垂直于这条直线的直线一定垂直于这个平面;
③若a∥α,b⊥α,则a⊥b;
④若a⊥b,则过b有惟一α与a垂直.
上述四个命题中,是真命题的有③④.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.等差数列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n项和为Sn
(1)求数列{an}的通项公式;
(2)设数列{bn}满足${b_n}=\frac{1}{{{S_{n+1}}-1}}$,求其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l:x-y-1=0,以原点O为极点,x轴非负半轴为极轴,取相同长度单位建立极坐标系,曲线C的极坐标方程为ρ2-4ρsinθ=5.
(Ⅰ)将直线l写成参数方程$\left\{{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数,α∈[0,π))的形式,并求曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C交于点A,B(点A在第一象限)两点,若点M的直角坐标为(1,0),求△OMA的面积.

查看答案和解析>>

同步练习册答案