精英家教网 > 高中数学 > 题目详情
12.已知定义在R上的函数f(x)=2|x-m|-1(m∈R)为偶函数.记a=f(log${\;}_{\frac{1}{3}}$4),b=(log25),c=f(2m),则a,b,c的大小关系为(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

分析 根据函数的奇偶性得出f(x)=2|x|-1=$\left\{\begin{array}{l}{{2}^{x}-1,x≥0}\\{{2}^{-x}-1,x<0}\end{array}\right.$,利用单调性求解即可.

解答 解:∵定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,
∴f(-x)=f(x),
∴m=0,
∵f(x)=2|x|-1=$\left\{\begin{array}{l}{{2}^{x}-1,x≥0}\\{{2}^{-x}-1,x<0}\end{array}\right.$,
∴f(x)在(0,+∞)单调递增,
∵a=f(log${\;}_{\frac{1}{3}}$4)=f(-log34)=f(log34),b=f(log25),c=f(2m)=f(0)=0,
0<log34<log25,
∴c<a<b,
故选:B.

点评 本题考查了对数函数的性质,函数的奇偶性,单调性,计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=$\frac{1}{2}{x^2}{e^x}$,f(x)的单调减区间是(-2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线l经过点M(2,3),当l截圆(x-2)2+(y+3)2=9所得弦长最长时,直线l的方程为(  )
A.x-2y+4=0B.3x+4y-18=0C.y+3=0D.x-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.使$\frac{1}{1×3}$+$\frac{1}{3×5}$+…+$\frac{1}{(2n-1)(2n+1)}$>$\frac{995}{1994}$成立的最小的自然数是249.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ex,g(x)=x-b,b∈R.
(1)若函数f(x)的图象与函数g(x)的图象相切,求b的值;
(2)设T(x)=f(x)+ag(x),a∈R,求函数T(x)的单调增区间;
(3)设h(x)=|g(x)|•f(x),b<1.若存在x1,x2∈[0,1],使|h(x1)-h(x2)|>1成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知sin(α+$\frac{π}{6}$)=$\frac{1}{3}$,α∈($\frac{π}{3}$,$\frac{5π}{6}$),则cos(α+$\frac{π}{3}$)=$\frac{-2\sqrt{6}-1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某校抽取一部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为1:2:8:7:5:2,第一小组频数为6.
(1)求第一小组的频率;
(2)样本容量是多少?
(3)若次数在100以上(含100次)为达标,试估计该学校学生达标率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.△ABC中,a,b、c分别为∠A、∠B、∠C的对边,如果a、b、c成等差数列,∠B=60°,△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,那么b等于(  )
A.$\sqrt{6}$B.4C.$\sqrt{5}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知二次函数f(x)=px2+qx.满足f(x-1)=f(x)+x-1.
(1)求f(x)的解析式;
(2)求f(x)<0时.X的取值集合;
(3)设a为常数,F(x)=|f(x)|-a,试讨论方程F(x)=0的解的个数.

查看答案和解析>>

同步练习册答案