精英家教网 > 高中数学 > 题目详情
17.已知sin(α+$\frac{π}{6}$)=$\frac{1}{3}$,α∈($\frac{π}{3}$,$\frac{5π}{6}$),则cos(α+$\frac{π}{3}$)=$\frac{-2\sqrt{6}-1}{6}$.

分析 由α的范围求出α+$\frac{π}{6}$的范围,进一步求出cos(α+$\frac{π}{6}$),把要求的三角函数式变形后展开两角和的余弦得答案.

解答 解:∵α∈($\frac{π}{3}$,$\frac{5π}{6}$),∴$α+\frac{π}{6}∈$($\frac{π}{2},π$),
由sin(α+$\frac{π}{6}$)=$\frac{1}{3}$,得cos(α+$\frac{π}{6}$)=-$\frac{2\sqrt{2}}{3}$,
∴cos(α+$\frac{π}{3}$)=cos[(α+$\frac{π}{6}$)$+\frac{π}{6}$]=cos(α+$\frac{π}{6}$)$•cos\frac{π}{6}$-sin(α+$\frac{π}{6}$)•sin$\frac{π}{6}$
=$-\frac{2\sqrt{2}}{3}×\frac{\sqrt{3}}{2}$-$\frac{1}{3}×\frac{1}{2}$=$\frac{-2\sqrt{6}-1}{6}$.
故答案为:$\frac{-2\sqrt{6}-1}{6}$.

点评 本题考查两角和与差的余弦,关键是“拆角、配角”思想的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.为了得到函数y=$\frac{1}{2}$cos(2x+$\frac{π}{3}$)的图象,可以把函数y=$\frac{1}{2}$cos2x的图象上所有的点(  )
A.向右平移$\frac{π}{3}$个单位B.向右平移$\frac{π}{6}$个单位
C.向左平移$\frac{π}{3}$个单位D.向左平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(2,m),若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为钝角,则m的取值范围是m<1且m≠-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.对于直线l,m,平面α,m?α,则“l⊥m”是“l⊥α”成立的必要不充分条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选填一个).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知定义在R上的函数f(x)=2|x-m|-1(m∈R)为偶函数.记a=f(log${\;}_{\frac{1}{3}}$4),b=(log25),c=f(2m),则a,b,c的大小关系为(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=3+loga(2x+3)的图象必经过定点P的坐标为(  )
A.(-1,3)B.(-1,4)C.(0,1)D.(2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知各项均为正数的数列{an}的前n项和为Sn,满足an+12=2Sn+n+4,a2-1,a3,a7恰为等比数列{bn}的前3项.
(I)求数列{an},{bn}的通项公式;
(Ⅱ)若${c_n}={(-1)^n}log_2^{\;}{b_n}-\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若cosx=$\frac{12}{13}$,且x为第四象限的角,则tanx的值等于(  )
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥S-ABCD的侧倰均相等,底面ABCD为平行四边形,其对角线交点为O.
(1)若平面SAD∩平面SBC=l,求证:l∥平面ABCD;
(2)求证:SO⊥平面ABCD.

查看答案和解析>>

同步练习册答案