精英家教网 > 高中数学 > 题目详情
2.已知一圆锥表面积为15πcm2,且它的侧面展开图是一个半圆,则圆锥的底面半径为$\sqrt{5}$cm.

分析 设圆锥的底面圆的半径为r,母线长为l,利用侧面展开图是一个半圆,求得母线长与底面半径之间的关系,代入表面积公式求r.

解答 解:设圆锥的底面圆的半径为r,母线长为l,
∵侧面展开图是一个半圆,∴πl=2πr⇒l=2r,
∵圆锥的表面积为15π,∴πr2+πrl=3πr2=15π,∴r=$\sqrt{5}$,
故圆锥的底面半径为$\sqrt{5}$(cm).
故答案为:$\sqrt{5}$.

点评 本题考查圆锥的表面积公式及圆锥的侧面展开图,解题的关键是利用侧面展开图是一个半圆,求得母线长与底面半径之间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若$f(θ)=sinθ-\sqrt{3}cosθ=2sin({θ+φ})({-π<φ<π})$,则φ=$-\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|2x+1|+|3x-2|,且不等式f(x)≤5的解集为$\{x|-\frac{4a}{5}≤x≤\frac{3b}{5}\}$,a,b∈R.
(1)求a,b的值;
(2)对任意实数x,都有|x-a|+|x+b|≥m2-3m+5成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\frac{1}{3}$x3+x2+ax,若g(x)=$\frac{1}{{e}^{x}}$,对任意x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f′(x1)>g(x2)成立,则实数a的取值范围是(e-2-$\frac{5}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=sin2x+sin2x+3cos2x,求
(1)函数的最小值及此时的x的集合;
(2)函数的单调减区间;
(3)当x∈[-$\frac{π}{4}$,$\frac{π}{4}$]时,求y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.$\overrightarrow{AB}$+$\overrightarrow{AC}$-$\overrightarrow{BC}$+$\overrightarrow{BA}$化简后等于(  )
A.$\overrightarrow{AB}$B.3 $\overrightarrow{AB}$C.$\overrightarrow{BA}$D.$\overrightarrow{CA}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若向量$\overrightarrow a$与$\overrightarrow b$的夹角θ的正弦值为$\frac{{\sqrt{2}}}{2}$,则θ=$\frac{π}{4}$或$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在直角梯形ABCD中,AB⊥AD,AB∥DC,AB=2,AD=DC=1,图中圆弧所在圆的圆心为点C,半径为$\frac{1}{2}$,且点P在图中阴影部分(包括边界)运动.若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{BC}$,其中x,y∈R,则4x-y的取值范围是(  )
A.$[2,\;\;3+\frac{{3\sqrt{2}}}{4}]$B.$[2,\;\;3+\frac{{\sqrt{5}}}{2}]$
C.$[3-\;\;\frac{{\sqrt{2}}}{4},\;\;3+\frac{{\sqrt{5}}}{2}]$D.$[3-\;\;\frac{{\sqrt{17}}}{2},\;\;3+\;\frac{{\sqrt{17}}}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,D在边BC上,且BD=2,DC=1,∠B=30°,∠ADC=150°,AB的长为$\frac{2\sqrt{3}}{3}$;△ABC的面积$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案