精英家教网 > 高中数学 > 题目详情
(1)已知tanα=2,求
2sinα-cosα
sinα+2cosα

(2)已知sin(
π
6
+α)=
3
3
,求cos(
π
3
-α)的值.
考点:三角函数的化简求值
专题:三角函数的求值
分析:(1)由已知,切化弦后代入即可求值;
(2)由角的公式可知(
π
6
+α)+(
π
3
-α)=
π
2
,从而可求cos(
π
3
-α).
解答: 解:(1)∵tanα=2,
∴原式=
2
sinα
cosα
-1
sinα
cosα
+2
=
2tanα-1
tanα+2
=
3
4

(2)∵(
π
6
+α)+(
π
3
-α)=
π
2

π
3
-α=
π
2
-(
π
6
+α),
∴cos(
π
3
-α)=cos[
π
2
-(
π
6
+α)]=sin(
π
6
+α)=
3
3
点评:本题主要考察了三角函数的化简求值,熟练应用公式是解题的关键,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x,y满足约束条件
3x-y+2≥0
8x-y-4≤0
x≥0,y≥0
,若目标函数z=ax+by(a>0,b>0)的最大值为8,则ab的最大值为(  )
A、1
B、2
C、
50
21
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2,1),
b
=(-1,-3),则|
a
-
b
|等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α为锐角,lg(1+cosα)=m,lg
1
1-cosα
=n,则lgsinα的值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知b>a,若函数f(x)在定义域内的一个区间[a,b]上函数值的取值范围恰好是[
a
2
b
2
],则称区间[a.b]是函数f(x)的一个减半压缩区间,若函数f(x)=
x-2
+m存在一个减半压缩区间[a,b],(b>a≥2),则实数m的取值范围是(  )
A、(0.5,1)
B、(0.5,1]
C、(0,0.5]
D、(0,0.5)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1=1+3i,z2=3+i(i为虚数单位).在复平面内,z1-z2对应的点在第
 
象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简求值:
(1)
1-tan15°
1+tan15°
;       
(2)sin50°(1+
3
tan10°).

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x||x-1|≤2},B={x|log2x<2},则A∪B=(  )
A、[-1,3]
B、[-1,4)
C、(0,3]
D、(-∞,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-4x+a+3.
(1)当a=0时,求函数f(x)在区间[1,4]上的值域;
(2)若函数y=f(x)在区间[-1,1]上存在零点,求实数a的取值范围;
(3)设函数y=f(x)(x∈[t,4])的值域为区间D,是否存在常熟t,使区间D的长度为9,?若存在,求出所有满足这个条件的t的值;若不存在,请说明理由.(注:区间[p,q])

查看答案和解析>>

同步练习册答案