精英家教网 > 高中数学 > 题目详情
在△ABC中,已知角A,B,C所对的三条边分别是a,b,c,且
cosB
cosC
=-
b
2a+c

(1)求角B的大小;
(2)若b=
13
,a+c=4
,求△ABC的面积.
分析:(1)利用正弦定理化简已知的表达式,结合两角和的正弦函数以及三角形的内角,求出B的值即可.
(2)通过余弦定理,以及B的值,a+c=4,求出ac的值,然后求出三角形的面积.
解答:解:(1)因为
cosB
cosC
=-
b
2a+c

所以
cosB
cosC
=-
sinB
2sinA+sinC
得:2sinAcosB+sinCcosB+sinBcosC=0
∴2sinAcosB+sinA=0,
∵A∈(0,π),∴sinA≠0,
则cosB=-
1
2
.B∈(0,π),∴B=
3

(2)由余弦定理得:b2=a2+c2-2accosB,
b=
13
,a+c=4
,B=
3

∴13=a2+c2+ac
∴(a+c)2-ac=13
∴ac=3
S=
1
2
acsinB=
3
3
4
点评:本题是中档题,考查正弦定理、余弦定理,两角和的正弦函数,三角形的面积公式的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知角A,B,C的对边分别为a,b,c,若A,B,C成等差数列,且b=
3
c=
2
,则B=
 
,A=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知角A为锐角,角A、B、C的对边分别为a、b、c,sinA=
2
2
3

(1)求tan2
B+C
2
+sin2
A
2
的值;
(2)若a=2
2
S△ABC=
2
,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知角A、B、C对应的三边分别为a,b,c,满足(a+b+c)(a+b-c)=3ab,则角C的大小等于
π
3
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知角A,B,C满足2B=A+C,且tanA和tanB是方程x2-λx+λ+1=0的两根,若△ABC的面积为3+
3
,试求△ABC的三边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知角A,B,C的对边分别是a,b,c,且a2+b2-c2=
3
ab

(1)求角C的大小;
(2)如果0<A≤
3
m=2cos2
A
2
-sinB-1
,求实数m的取值范围.

查看答案和解析>>

同步练习册答案