精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
-2-x+1x≤0
f(x-1)x>0
,则下列命题中:
(1)函数f(x)在[-1,+∞)上为周期函数;
(2)函数f(x)在区间[m,m+1)(m∈N)上单调递增;
(3)函数f(x)在x=m-1(m∈N)取到最大值0,且无最小值;
(4)若方程f(x)=loga(x+2)(0<a<1),有且只有两个实根,则a∈[
1
3
1
2
)

正确的命题的个数是(  )
A、1个B、2个C、3个D、4个
分析:作出f(x)的图象,由图象对各选项进行判断即可.x≤0时,y=-2-x+1=- (
1
2
)
x
 +1

可由y=(
1
2
)
x
的图象作关于x轴的对称图象,再向上平移一个单位得到.
解答:解:f(x)的图象如图所示:精英家教网精英家教网
(1)不正确,因为f(-1)=-1≠f(0)=0;(2)正确;
(3)不正确,因为m=0时,f(m-1)=f(-1)=-1,不是最大值;
(4)正确,如图(2)所示,图中两条曲线对应的a分别为
1
3
1
2

故方程f(x)=loga(x+2)(0<a<1),有且只有两个实根,则a∈[
1
3
1
2
)

故选B
点评:本题考查分段函数的性质、方程的根等知识,综合性较强,考查利用所学知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案