精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x2+x+4
x
(x>0)
-
x2-x+4
x
(x<0)

(Ⅰ)求证:函数f(x)是偶函数;
(Ⅱ)判断函数f(x)分别在区间(0,2],[2,+∞)上的单调性,并加以证明.
(Ⅰ)由题可知函数定义域关于原点对称.
当x>0时,-x<0,
f(x)=
x2+x+4
x
,f(-x)=
(-x2)-(-x)+4
(-x)
=
x2+x+4
x

∴f(x)=f(-x).
当x<0时,-x>0,
f(x)=-
x2-x+4
x
,f(-x)=
(-x2)+(-x)+4
(-x)
=-
x2-x+4
x

∴f(x)=f(-x).
综上所述,对于x≠0,都有f(x)=f(-x),∴函数f(x)是偶函数.
(Ⅱ)当x>0时,f(x)=
x2+x+4
x
=x+
4
x
+1

设x2>x1>0,则f(x2)-f(x1)=
x2-x1
x1x2
(x1x2-4)

当x2>x1≥2时,f(x2)-f(x1)>0;当2≥x2>x1>0时,f(x2)-f(x1)<0,
∴函数f(x)在(0,2]上是减函数,函数f(x)在[2,+∞)上是增函数.
(另证:当x>0,f(x)=
x2+x+4
x
=x+
4
x
+1,f′(x)=1-
4
x2

0<x≤2?0<x2≤4?
4
x2
≥1?1-
4
x2
≤0

x≥2?x2≥4?0<
4
x2
≤1?1-
4
x2
≥0

∴函数f(x)在(0,2]上是减函数,在[2,+∞)上是增函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案