精英家教网 > 高中数学 > 题目详情
已知等差数列{an},Sn为其前n项的和,a2=0,a5=6,n∈N*
(I)求数列{an}的通项公式;
(II)若bn=3an,求数列{bn}的前n项的和.
(Ⅰ)依题意
a1+d=0
a1+4d=6.
…(2分)
解得
a1=-2
d=2.

∴an=2n-4…(5分)
(Ⅱ)由(Ⅰ)可知bn=32n-4
bn+1
bn
=9

所以数列{bn}是首项为
1
9
,公比为9的等比数列,…(7分)
1
9
(1-9n)
1-9
=
1
72
(9n-1)

所以数列{bn}的前n项的和
1
72
(9n-1)
.…(10分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案