(本题满分18分,第1小题满分6分,第2小题满分6分,第3小题满
分6分)
已知函数,如果存在给定的实数对(),使得恒成立,则称为“S-函数”.
(1)判断函数是否是“S-函数”;
(2)若是一个“S-函数”,求出所有满足条件的有序实数对;
(3)若定义域为的函数是“S-函数”,且存在满足条件的有序实数对和,当时,的值域为,求当时函数的值域.
(本题满分18分,第1小题满分6分,第2小题满分6分,第3小题满
分6分)
已知函数,如果存在给定的实数对(),使得恒成立,则称为“S-函数”.
(1)判断函数是否是“S-函数”;
(2)若是一个“S-函数”,求出所有满足条件的有序实数对;
(3)若定义域为的函数是“S-函数”,且存在满足条件的有序实数对和,当时,的值域为,求当时函数的值域.
解:(1)若是“S-函数”,则存在常数,使得 (a+x)(a-x)=b.
即x2=a2-b时,对xÎR恒成立.而x2=a2-b最多有两个解,矛盾,
因此不是“S-函数”.……………………………………………………3分
若是“S-函数”,则存在常数a,b使得,
即存在常数对(a, 32a)满足.
因此是“S-函数”………………………………………………………6分
(2)是一个“S-函数”,设有序实数对(a, b)满足:
则tan(a-x)tan(a+x)=b恒成立.
当a=时,tan(a-x)tan(a+x)= -cot2(x),不是常数.……………………7分
因此,,
则有.
即恒成立. ……………………………9分
即,
当,时,tan(a-x)tan(a+x)=cot2(a)=1.
因此满足是一个“S-函数”的常数(a, b)=.…12分
(3) 函数是“S-函数”,且存在满足条件的有序实数对和,
于是
即,
,.……………………14分
.………16分
因此, …………………………………………17分
综上可知当时函数的值域为.……………18分
科目:高中数学 来源: 题型:
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
在平行四边形中,已知过点的直线与线段分别相交于点。若。
(1)求证:与的关系为;
(2)设,定义函数,点列在函数的图像上,且数列是以首项为1,公比为的等比数列,为原点,令,是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由。
(3)设函数为上偶函数,当时,又函数图象关于直线对称, 当方程在上有两个不同的实数解时,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源:2012届上海市崇明中学高三第一学期期中考试试题数学 题型:解答题
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
对于数列,如果存在一个正整数,使得对任意的()都有成立,那么就把这样一类数列称作周期为的周期数列,的最小值称作数列的最小正周期,以下简称周期。例如当时是周期为的周期数列,当时是周期为的周期数列。
(1)设数列满足(),(不同时为0),且数列是周期为的周期数列,求常数的值;
(2)设数列的前项和为,且.
①若,试判断数列是否为周期数列,并说明理由;
②若,试判断数列是否为周期数列,并说明理由;
(3)设数列满足(),,,,数列的前项和为,试问是否存在,使对任意的都有成立,若存在,求出的取值范围;不存在, 说明理由;
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市高三第一学期期中考试试题数学 题型:解答题
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
对于数列,如果存在一个正整数,使得对任意的()都有成立,那么就把这样一类数列称作周期为的周期数列,的最小值称作数列的最小正周期,以下简称周期。例如当时是周期为的周期数列,当时是周期为的周期数列。
(1)设数列满足(),(不同时为0),且数列是周期为的周期数列,求常数的值;
(2)设数列的前项和为,且.
①若,试判断数列是否为周期数列,并说明理由;
②若,试判断数列是否为周期数列,并说明理由;
(3)设数列满足(),,,,数列 的前项和为,试问是否存在,使对任意的都有成立,若存在,求出的取值范围;不存在, 说明理由;
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市十三校高三上学期第一次联考试题文科数学 题型:解答题
(本题满分18分,第1小题满分5分,第2小题满分5分,第3小题满分8分)
已知函数,其中.
(1)当时,设,,求的解析式及定义域;
(2)当,时,求的最小值;
(3)设,当时,对任意恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(文) 题型:解答题
(本题满分18分;第(1)小题5分,第(2)小题5分,第(3)小题8分)
设数列是等差数列,且公差为,若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.
(1)若,求证:该数列是“封闭数列”;
(2)试判断数列是否是“封闭数列”,为什么?
(3)设是数列的前项和,若公差,试问:是否存在这样的“封闭数列”,使;若存在,求的通项公式,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com