精英家教网 > 高中数学 > 题目详情

(1)已知f(x)=|x-a|,若不等式f(x)≤2解集为{x|-1≤x≤3},求a的值;
(2)若log2(|x-a|+|x-3|)≥2恒成立,求实数a的取值范围.

解:(1)∵不等式f(x)≤2解集为{x|-1≤x≤3},
∴-1和3为方程f(x)=2的两根
即|-1-a|=|3-a|=2
解得:a=1
(2)若log2(|x-a|+|x-3|)≥2恒成立,
∴|x-a|+|x-3|≥4恒成立,
又∵|x-a|+|x-3|≥|(x-a)-(x-3)|=|a-3|
∴|a-3|≥4,
∴a-3≥4或a-3≤-4
解得a≥7或a≤-1
分析:(1)根据不等式解集的端点与方程根之间的关系,我们可得-1和3为方程f(x)=2的两根,进而根据绝对值的定义,可得a的值;
(2)根据对数函数的性质,可将已知转化为|x-a|+|x-3|≥4恒成立,利用绝对值的性质可得|a-3|≥4,进而根据“大于看两边,小于看中间”,可得a的取值范围
点评:本题考查的知识点是函数恒成立问题,绝对值不等式的解法,其中熟练掌握函数零点,方程根与不等式解集端点之间的关系及绝对值的性质是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)的定义域为x∈R且x≠1,已知f(x+1)为奇函数,当x<1时,f(x)=2x2-x+1,那么,当x>1时,f(x)的递减区间是(  )
A、[
5
4
,+∞)
B、[1,
5
4
]
C、[
7
4
,+∞)
D、(1,
7
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);
(2)已知f(x)满足2f(x)+f(
1x
)=3x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①已知f(x)+2f(
1
x
)=3x
,则函数g(x)=f(2x)在(0,1)上有唯一零点;
②对于函数f(x)=x
1
2
的定义域中任意的x1、x2(x1≠x2)必有f(
x1+x2
2
)<
f(x1)+f(x2)
2

③已知f(x)=|2-x+1-1|,a<b,f(a)<f(b),则必有0<f(b)<1;
④已知f(x)、g(x)是定义在R上的两个函数,对任意x、y∈R满足关系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0时f(x)•g(x)≠0.则函数f(x)、g(x)都是奇函数.
其中正确命题的序号是
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aln(1+ex)-(a+1)x.
(1)已知f(x)满足下面两个条件,求a的取值范围.
①在(-∞,1]上存在极值,
②对于任意的θ∈R,c∈R直线l:xsinθ+2y+c=0都不是函数y=f(x)(x∈(-1,+∞))图象的切线;
(2)若点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))从左到右依次是函数y=f(x)图象上三点,且2x2=x1+x3,当a>0时,△ABC能否是等腰三角形?若能,求△ABC面积的最大值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)=2+log4x(1≤x≤16),求函数g(x)=[f(x)]2+f(x2)的值域.
(2)若直线y=4a与y=|ax-2|(a>0且a≠1)的图象有两个公共点,求a的取值范围.

查看答案和解析>>

同步练习册答案