精英家教网 > 高中数学 > 题目详情
5.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量
m(件)与时间t(天)的关系如表所示.
时间t/天1361036
日销售量
m/件
9490847624
未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=$\frac{1}{4}$t+25(1≤t≤20,且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系为y2=$\frac{1}{2}$t+40(21≤t≤40,且t为整数).下面我们就来研究销售这种商品的有关问题.
(1)认真分析表格中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些 数据的m(件)与t(天)的关系式.
(2)试预测未来40天中哪一天的日销售利润最大,最大利润是多少?
(3)在实际销售的前20天中,该公司决定每销售1件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.

分析 (1)通过观察表格可知m与t是一次函数关系,设函数关系式为m=kt+b,代入计算即得结论;
(2)通过设日销售利润为W元,分1≤t≤20、21≤t≤40两种情况讨论,利用“销售利润=销售收入-成本”分别计算出前20天、后20天中的最大日获利润,比较即得结论;
(3)通过写出扣除捐赠后每天的日销售利润W=-$\frac{1}{2}$t2+(14+2a)t+480-96a,结合W随t的增大而增大可知函数W的图象的对称轴t=14+2a≥20,进而计算可得结论.

解答 解:(1)∵根据表格知道日销售量与时间t是均匀减少的,
∴确定m与t是一次函数关系,设函数关系式为:m=kt+b,
∵当t=1,m=94;当t=3,m=90,
∴$\left\{\begin{array}{l}{94=k+b}\\{90=3k+b}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=-2}\\{b=96}\end{array}\right.$,
∴m=-2t+96(1≤t≤40,且t为整数);
(2)设日销售利润为W元,当1≤t≤20时,
W=(-2t+96)($\frac{1}{4}$t+25-20)=-$\frac{1}{2}$(t-14)2+578(1≤t≤20),
于是当x=14时,W有最大值578元;
当21≤t≤40时,W=(-2t+96)($\frac{1}{2}$t+40-20)=(t-44)2-16(21≤t≤40),
根据二次函数的相关性质可知:
当t=21时W有最大值513元;
综上所述,当t=14时日获利润最大,且为578元;
(3)W=(-2t+96)($\frac{1}{4}$t+25-20-a)=-$\frac{1}{2}$t2+(14+2a)t+480-96a,
则函数W的图象为开口向下的抛物线,其对称轴为t=14+2a,
∵1≤t≤20,且t为整数,W随t的增大而增大,
∴t=14+2a≥20,
解得:a≥3,
又∵a<4,
∴a的取值范围是[3,4).

点评 本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若loga$\frac{3}{5}$<1(a>0且a≠1),则实数a的取值范围是(0,$\frac{3}{5}$)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱锥P-ABC中,PA=PB=$\sqrt{6}$,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC.
(1)求证:PA⊥平面PBC;
(2)求异面直线AB和PC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一艘船以20km/h的速度向正北航行,船在A处看见灯塔B在船的东北方向,1h后船在C处看见灯塔B在船的北偏东75°的方向上,这时船与灯塔的距离BC等于(  )
A.20$\sqrt{2}$B.20C.20$\sqrt{3}$D.10$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知直线y=x与圆心在第二象限的圆C相切于原点O,且圆C与圆C′:x2+y2-2x-2y-6=0的面积相等.
(Ⅰ)求圆C的标准方程;
(Ⅱ)试探究圆C上是否存在异于原点的点Q,使点Q到定点F(4,0)的距离等于线段OF的长?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图在边长为1的正方形网格中用粗线画出了某个多面体的三视图,则该多面体的表面积为(  )
A.8+12$\sqrt{2}$B.16+24$\sqrt{2}$C.$\frac{1}{3}(8+12\sqrt{2})$D.4+6$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图是一个空间几何体的三视图,则该几体体的外接球的体积是(  )
A.$\frac{64\sqrt{2}}{3}$πB.$\frac{32\sqrt{2}}{3}$πC.$\frac{8\sqrt{2}}{3}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2-2ax+5,(a∈R).
(1)求函数f(x)在[-2,2]上的最小值g(a)的表达式
(2)若函数f(x)在区间(-∞,2]上是单调递减的,且对于任意的x1、x2∈[1,a+1],总有|f(x1)-
    f(x2)|≤4,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)=$\frac{{-{2^x}+m}}{{{2^{x+1}}+n}}$(m>0,n>0).
(1)若f(x)是奇函数,求m与n的值;
(2)在(1)的条件下,求不等式$f[{f(x)}]+f(\frac{1}{4})<0$的解集.

查看答案和解析>>

同步练习册答案